Answer would have to be too the gallon of water would have to be2
Answer:
There are 118 plants that weight between 13 and 16 pounds
Step-by-step explanation:
For any normal random variable X with mean μ and standard deviation σ : X ~ Normal(μ, σ)
This can be translated into standard normal units by :
Let X be the weight of the plant
X ~ Normal( 15 , 1.75 )
To find : P( 13 < X < 16 )

= P( -1.142857 < Z < 0.5714286 )
= P( Z < 0.5714286 ) - P( Z < -1.142857 )
= 0.7161454 - 0.1265490
= 0.5895965
So, the probability that any one of the plants weights between 13 and 16 pounds is 0.5895965
Hence, The expected number of plants out of 200 that will weight between 13 and 16 = 0.5895965 × 200
= 117.9193
Therefore, There are 118 plants that weight between 13 and 16 pounds.
Answer:
Step-by-step explanation:
f(5)=49.5(0.88)^5
f(5)=$26.12
It costs 5,5! Bc 1 costs 0,5
The probablity that the sample's mean length is greate than 6.3 inches is0.8446.
Given mean of 6.5 inches,standard deviation of 0.5 inches and sample size of 46.
We have to calculate the probability that the sample's mean length is greater than 6.3 inches is 0.8446.
Probability is the likeliness of happening an event. It lies between 0 and 1.
Probability is the number of items divided by the total number of items.
We have to use z statistic in this question because the sample size is greater than 30.
μ=6.5
σ=0.5
n=46
z=X-μ/σ
where μ is mean and
σ is standard deviation.
First we have to find the p value from 6.3 to 6.5 and then we have to add 0.5 to it to find the required probability.
z=6.3-6.5/0.5
=-0.2/0.5
=-0.4
p value from z table is 0.3446
Probability that the mean length is greater than 6.3inches is 0.3446+0.5=0.8446.
Hence the probability that the mean length is greater than 6.3 inches is 0.8446.
Learn more about probability at brainly.com/question/24756209
#SPJ4