Answer:
1) The solution of the system is

2) The solution of the system is

Step-by-step explanation:
1) To solve the system of equations

using the row reduction method you must:
Step 1: Write the augmented matrix of the system
![\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: Swap rows 1 and 2
![\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%20%5Cfrac%7B37%7D%7B6%7D%20%26%20-%20%5Cfrac%7B481%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: 
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: 
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: Rewrite the system using the row reduced matrix:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%265%5C%5Cx_2%26%3D%268%5C%5Cx_3%26%3D%26-13%5Cend%7Barray%7D%5Cright)
2) To solve the system of equations

using the row reduction method you must:
Step 1:
![\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%204%20%26%20-1%20%26%203%20%26%2012%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: 
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%20%5Cfrac%7B117%7D%7B2%7D%20%26%20%5Cfrac%7B117%7D%7B2%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: 
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: 
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: 
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 11:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%262%5C%5Cx_2%26%3D%26-7%5C%5Cx_3%26%3D%26-1%5Cend%7Barray%7D%5Cright)
Answer:
1/1024.
Step-by-step explanation:
There are 3 odd numbers in the numbers from 1 to 6. So:
Probability (one toss is odd) = 3/6 = 1/2.
So the Probability ( 10 tosses are all odd) = (1/2)^10
= 1/1024.
Answer:
6
Step-by-step explanation:
2.5x6=15 and thats the closest it'll get. To be exact, it's 6.2, but i dont know if you need that.
The variable that assigns a real number value to an event in a sample space is called Random variable.
<h3>What is Random variable?</h3>
A random variable is a variable that can take on many values. This is because there can be several outcomes of a random occurrence. Thus, a random variable should not be confused with an algebraic variable. An algebraic variable represents the value of an unknown quantity in an algebraic equation that can be calculated. On the other hand, a random variable can have a set of values that could be the resulting outcome of a random experiment.
As, A random variable can be defined as a type of variable whose value depends upon the numerical outcomes of a certain random phenomenon. It is also known as a stochastic variable. Random variables are always real numbers as they are required to be measurable.
For example
Suppose 2 dice are rolled and the random variable, X, is used to represent the sum of the numbers. Then, the smallest value of X will be equal to 2 (1 + 1), while the highest value would be 12 (6 + 6). Thus, X could take on any value between 2 to 12 (inclusive). Now if probabilities are attached to each outcome then the probability distribution of X can be determined.
Hence, The variable that assigns a real number value to an event in a sample space is called Random variable.
Learn more about random variable here:
brainly.com/question/17238189
#SPJ4