Answer:
Which problem?
Step-by-step explanation:
<span>The
population standard deviation is unknown, sample size is less than 30,
and the population has a normal or near-normal distribution</span>.
If there are no repeating x values and an x value only goes to <em>one</em><em> </em>y value, then yes, it is a function.
1)
![(-2+\sqrt{-5})^2\implies (-2+\sqrt{-1\cdot 5})^2\implies (-2+\sqrt{-1}\sqrt{5})^2\implies (-2+i\sqrt{5})^2 \\\\\\ (-2+i\sqrt{5})(-2+i\sqrt{5})\implies +4-2i\sqrt{5}-2i\sqrt{5}+(i\sqrt{5})^2 \\\\\\ 4-4i\sqrt{5}+[i^2(\sqrt{5})^2]\implies 4-4i\sqrt{5}+[-1\cdot 5] \\\\\\ 4-4i\sqrt{5}-5\implies -1-4i\sqrt{5}](https://tex.z-dn.net/?f=%28-2%2B%5Csqrt%7B-5%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%5Ccdot%205%7D%29%5E2%5Cimplies%20%28-2%2B%5Csqrt%7B-1%7D%5Csqrt%7B5%7D%29%5E2%5Cimplies%20%28-2%2Bi%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%20%28-2%2Bi%5Csqrt%7B5%7D%29%28-2%2Bi%5Csqrt%7B5%7D%29%5Cimplies%20%2B4-2i%5Csqrt%7B5%7D-2i%5Csqrt%7B5%7D%2B%28i%5Csqrt%7B5%7D%29%5E2%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D%2B%5Bi%5E2%28%5Csqrt%7B5%7D%29%5E2%5D%5Cimplies%204-4i%5Csqrt%7B5%7D%2B%5B-1%5Ccdot%205%5D%20%5C%5C%5C%5C%5C%5C%204-4i%5Csqrt%7B5%7D-5%5Cimplies%20-1-4i%5Csqrt%7B5%7D)
3)
let's recall that the conjugate of any pair a + b is simply the same pair with a different sign, namely a - b and the reverse is also true, let's also recall that i² = -1.
![\cfrac{6-7i}{1-2i}\implies \stackrel{\textit{multiplying both sides by the denominator's conjugate}}{\cfrac{6-7i}{1-2i}\cdot \cfrac{1+2i}{1+2i}\implies \cfrac{(6-7i)(1+2i)}{\underset{\textit{difference of squares}}{(1-2i)(1+2i)}}} \\\\\\ \cfrac{(6-7i)(1+2i)}{1^2-(2i)^2}\implies \cfrac{6-12i-7i-14i^2}{1-(2^2i^2)}\implies \cfrac{6-19i-14(-1)}{1-[4(-1)]} \\\\\\ \cfrac{6-19i+14}{1-(-4)}\implies \cfrac{20-19i}{1+4}\implies \cfrac{20-19i}{5}\implies \cfrac{20}{5}-\cfrac{19i}{5}\implies 4-\cfrac{19i}{5}](https://tex.z-dn.net/?f=%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20the%20denominator%27s%20conjugate%7D%7D%7B%5Ccfrac%7B6-7i%7D%7B1-2i%7D%5Ccdot%20%5Ccfrac%7B1%2B2i%7D%7B1%2B2i%7D%5Cimplies%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B%5Cunderset%7B%5Ctextit%7Bdifference%20of%20squares%7D%7D%7B%281-2i%29%281%2B2i%29%7D%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B%286-7i%29%281%2B2i%29%7D%7B1%5E2-%282i%29%5E2%7D%5Cimplies%20%5Ccfrac%7B6-12i-7i-14i%5E2%7D%7B1-%282%5E2i%5E2%29%7D%5Cimplies%20%5Ccfrac%7B6-19i-14%28-1%29%7D%7B1-%5B4%28-1%29%5D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B6-19i%2B14%7D%7B1-%28-4%29%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B1%2B4%7D%5Cimplies%20%5Ccfrac%7B20-19i%7D%7B5%7D%5Cimplies%20%5Ccfrac%7B20%7D%7B5%7D-%5Ccfrac%7B19i%7D%7B5%7D%5Cimplies%204-%5Ccfrac%7B19i%7D%7B5%7D)
Problem 5
Apply the Law of Sines
s/sin(S) = r/sin(R)
s/sin(78) = 10/sin(48)
s = sin(78)*10/sin(48)
s = 13.162274
<h3>Answer: 13.162274 approximately</h3>
=============================================================
Problem 6
Use the Law of Sines here as well.
x/sin(X) = y/sin(Y)
x/sin(53) = 6/sin(22)
x = sin(53)*6/sin(22)
x = 12.791588
<h3>Answer: 12.791588 approximately</h3>