Nitrogen makes most of the atmosphere of the earth
Answer:
Antibiotic resistance can evolved in bacterial population in the following ways:
Explanation:
- In response to constant exposure to antibiotics some members of a bacterial population develop some beneficial mutations in some essential genes that gives them survival advantage in terms of food and space over the sensitive bacterial strains and hence they are capable of out-competing the sensitive bacteria.
- This happens due to the process of Natural Selection.
- These genes are called antibiotic resistance genes and bacteria usually carry them on plasmids in form of cassettes where genes resistant to multiple drugs are incorporated. These plasmids are called the MDR or Multi-Drug Resistance Plasmids.
- These resistant plasmids can be easily transferred among bacterial populations by conjugation, transformation or transduction or direct plasmid transfer.
- The resistant genes encode for proteins that render the drug ineffective by promoting their efflux from the cells, preventing their entry into the cell, chemically modifying them such that they become non-functional or altering the target site of the drug.
Answer: The answer is D.) codominance.
Answer:
I found this from someone else. This is not my work, Also if this does not answer the question ask the question on here and you can see more answers. hope this helps.!
Explanation:
According to National Geographic, ostriches are a part of a very small group of birds that cannot fly because unlike most birds, their small wings are not strong enough to carry their body for flight and their breastbone isn't balanced enough for flying. Birds that are unable to fly are called ratites.
A number of scientists namely Thomas Huxley, Richard Owen, and others have tried to show that these ratites are actually related to each other and eventually, it was discovered that they all had one thing in common, the way the bones at the roof of the mouth were arranged was similar to that of reptiles rather than other birds.
Richard Owen found and assembled the remains of an extinct ostrich skeleton which was an extinct moa and contrary to already held opinion, one ratite known as tinamous did not really fit with the profile of a ratite because it could fly, even though almost grudgingly and they possessed keeled sternum which suggests that they evolved from flying birds.
DNA tests showed that tinamous evolved within ratites and not necessarily as a separate entity. The tests also showed that moas and tinamous are related.
It was also speculated that the division of the supercontinent Pangaea southern side led to the separation of flightless ratite ancestors, causing each landlocked group to evolve and become the flightless birds we know today such as the ostrich, rheas, etc.
The immediate lack of oxygen.