Answer:
I > III > II
Explanation:
I) A disulfide bond between two cystines is created when a sulfur atom from one cystine forms a strong, single covalent bond with a sulfur atom from a second cystine. When a disulfide bond is created, each cystine loses one hydrogen atom. The atom count is 11 for a cystine in mid-chain, but changes to 10 if the cystine joins with another in a disulfide bond. This lead to a much more stable intermolecular interaction.
III) Hydrogen Bonding in water
These hydrogen bonds are at best an interaction, inducing slight positive and negative charges in the Hydrogen and Oxygen/Nitrogen atoms.
The Hydrophilic amino acids have O & N atoms, which form hydrogen bonds with water. These atoms have an uneven distribution of electrons, creating a polar molecule that can interact and form hydrogen bonds with water.
The hydrogen bonds aren't as strong as the covalent bonds in disulfides.
II) Hydrophobic interactions between two leucines
A hydrophobic interaction is formed between two nonpolar molecules.
It describes the preference of nonpolar molecular surfaces to interact with other nonpolar molecular surfaces, thereby displacing water molecules from the interacting surfaces.
I’m not sure but it has to be hydrogen
The thermal energy of a substance is related to the movement of the particles in the substance. This energy is defined by the temperature of the substance and whether heat is transferred or lost. This can be explained as a higher temperature causes the particles in substances to move faster and collide.
Answer:
474.3 cm³
Explanation:
Given data:
Initial volume of chlorine gas = 568 cm³
Initial temperature = 25°C
Final volume = ?
Final temperature = -25°C
Solution:
Initial temperature = 25°C (25+273 = 297 K)
Final temperature = -25°C (-25 +273 = 248 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 568 cm³ × 248 K /297 K
V₂ = 140864 cm³.K / 297 K
V₂ = 474.3 cm³
Answer:
The answer is B.
Explanation:
They are the strongest type of inter-molecular force attractive forces that can act between atoms. This is why Vander Walls forces important.