The answer is 297.14 g/mol
Answer:
CH3COO-
Explanation:
The conjugate base if a weak acid is a strong base, and the conjugate base of a strong acid is a weak base.
Acetic acid is a weak acid, so its conjugate base (CH3COO-) is a strong base.
Nitric, sulfuric, and hydrochloric acids are all strong acid. Their conjugate bases (NO3-, SO4^2-, and Cl- are all weak bases.
Answer:
The mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Explanation:
We are given that
Aqueous solution that contains 22.9% NaOH by mass means
22.9 g NaOH in 100 g solution.
Mass of NaOH(WB)=22.9 g
Mass of water =100-22.9=77.1
Na=23
O=16
H=1.01
Molar mass of NaOH(MB)=23+16+1.01=40.01
Number of moles =
Using the formula
Number of moles of NaOH

Molar mass of water=16+2(1.01)=18.02g
Number of moles of water

Now, mole fraction of NaOH
=

=0.882
Hence, the mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Concentration of unknown acid is 0.061 M
Given:
Concentration of NaOH = 0.125 M
Volume of NaOH = 24.68 mL
Volume of acid solution = 50.00 mL
To Find:
Concentration of the unknown acid
Solution: Concentration is the abundance of a constituent divided by the total volume of a mixture. The concentration of the solution tells you how much solute has been dissolved in the solvent
Here we will use the formula for concentration:
M1V1 = M2V2
0.125 x 24.68 = 50 x M2
M2 = 0.125 x 24.68 / 50
M2 = 0.061 M
Hence, the concentration of unknown acid is 0.061 M
Learn more about Concentration here:
brainly.com/question/17206790
#SPJ4