Tan 135 = -1
so rectangular coordinates are (-7 sqrt2, 7 sqrt2)
There is no solution ,<span>a+c=-10;b-c=15;a-2b+c=-5 </span>No solution System of Linear Equations entered : [1] 2a+c=-10
[2] b-c=15
[3] a-2b+c=-5
Equations Simplified or Rearranged :<span><span> [1] 2a + c = -10
</span><span> [2] - c + b = 15
</span><span> [3] a + c - 2b = -5
</span></span>Solve by Substitution :
// Solve equation [3] for the variable c
<span> [3] c = -a + 2b - 5
</span>
// Plug this in for variable c in equation [1]
<span><span> [1] 2a + (-a +2?-5) = -10
</span><span> [1] a = -5
</span></span>
// Plug this in for variable c in equation [2]
<span><span> [2] - (-? +2b-5) + b = 15
</span><span> [2] - b = 10
</span></span>
// Solve equation [2] for the variable ?
<span> [2] ? = b + 10
</span>
// Plug this in for variable ? in equation [1]
<span><span> [1] (? +10) = -5
</span><span> [1] 0 = -15 => NO solution
</span></span><span>No solution</span>
The area of an equilateral triangle of side "s" is s^2*sqrt(3)/4. So the volume of the slices in your problem is
(x - x^2)^2 * sqrt(3)/4.
Integrating from x = 0 to x = 1, we have
[(1/3)x^3 - (1/2)x^4 + (1/5)x^5]*sqrt(3)/4
= (1/30)*sqrt(3)/4 = sqrt(3)/120 = about 0.0144.
Since this seems quite small, it makes sense to ask what the base area might be...integral from 0 to 1 of (x - x^2) dx = (1/2) - (1/3) = 1/6. Yes, OK, the max height of the triangles occurs where x - x^2 = 1/4, and most of the triangles are quite a bit shorter...
Answer:
A
Step-by-step explanation:
Answer:
1. If it is just a line and it has no end points then it means that it is a line if it has endpoints then it's a line segnment.
2. a suplementary angle is equal to 180 degrees and congruent angels are equal angles. (conruent is just a fancy word for equal.)
Step-by-step explanation:
/