Answer: 116.926 km/h
Explanation:
To solve this we need to analise the relation between the car and the Raindrops. The cars moves on the horizontal plane with a constant velocity.
Car's Velocity (Vc) = 38 km/h
The rain is falling perpedincular to the horizontal on the Y-axis. We dont know the velocity.
However, the rain's traces on the side windows makes an angle of 72.0° degrees. ∅ = 72°
There is a relation between this angle and the two velocities. If the car was on rest, we will see that the angle is equal to 90° because the rain is falling perpendicular. In the other end, a static object next to a moving car shows a horizontal trace, so we can use a trigonometric relation on this case.
The following equation can be use to relate the angle and the two vectors.
Tangent (∅) = Opposite (o) / adjacent (a)
Where the Opposite will be the Rain's Vector that define its velocity and the adjacent will be the Car's Velocity Vector.
Tan(72°) = Rain's Velocity / Car's Velocity
We can searching for the Rain's Velocity
Tan(72°) * Vc = Rain's Velocity
Rain's Velocity = 116.926 km/h
To solve this problem it is necessary to apply the concepts related to the kinematic equations of angular motion.
By definition, acceleration can be expressed as the change in angular velocity squared over a given period of distance traveled.

where,
Angular velocity
Angular displacement.
In turn, as a function of time, we can represent it as,

For our case we have to,


PART A) In the case of angular acceleration we have to,



PART B) Through the definition of angular acceleration as a function of time we can calculate it,




Newtons first law states that if an objects velocity is changing a <u>force</u> must be acting on it.
Explanation:
Newton's first law of motion states that:
"An object at rest (or in uniform motion) will remain at rest (or will continue moving with the same velocity) unless acted upon an unbalanced force"
We can apply this law to a daily life example:
- Take a book at rest on a table: the forces acting on the book are balanced. If we do not apply any other force, we know that the book will remain at rest: this is exactly what is summarized in Newton's first law.
- Take a space probe moving in the interstellar space, very far from any planet or source of gravitational force. Since there are no forces acting on the proble, the probe will continue moving at the same velocity (same speed and same direction) forever, unless stopped by a new force acting on it.
This means that in order to put an object at rest in motion, or to stop an object already in motion, or to change its velocity, an unbalanced force needs to be applied: otherwise, the object will continue having the same velocity (which can be either zero or non-zero), so it will continue having same speed and same direction.
Learn more about Newton laws of motion:
brainly.com/question/11411375
brainly.com/question/1971321
brainly.com/question/2286502
brainly.com/question/2562700
#LearnwithBrainly
If the lightbulb A in the circuit shown in the image burned out, the path for the current to flow is disrupted because one of its terminals is connected direct to the source. So, there will be no current through the lightbulbs B, C, and D, and they will turn off. Similarly it will happen, if the lightbulb D burned out.
If the lightbulb B burned out the current will continue circulating through the lightbulbs A, C, and D, because lightbulb B is connected in parallel. Similarly it will happen, if the lightbulb C burned out.
Answer:
a) 17.086m
b) 0.1671 m
Explanation:
Given data: speed of water through the hose = 1.81 m/s
through the nozzle = 18.3 m/s
We know that maximum height of an object with upward velocity v is given by,
a) H = v^2/2g
where H is the maximum height water emerges
= 18.3^2/(2×9.8) = 17.086 m answer
b) Again,
H = v^2/2g
= 1.81^2/(2×9.8) = 0.1671 m