Answer:
When ATP is broken down to ADP
Explanation:
Energy is released from a molecule of ATP when the substance is broken down to ADP
ATP is the energy currency of a cell. It is called Adenosine Triphosphate
When a phosphate is removed, it become ADP - Adenosine Disphosphate.
In like manner, the breaking down releases inherent chemical energy and converts it to other forms of energy.
This is how the body system derives sufficient amount of energy for every of its activities.
When an organism undergoes cellular respiration, this is the process that is in play to release energy needed for the body to function
In ocean waves, water particles move in circles and energy moves horizontally. Ocean waves are orbital progressive waves. The water molecules that make up the wave move in circles, or orbits, as the wave progresses. The ocean orbital waves get their start when wind blows on the open ocean, A gentle wind doesn't have much of an effect, but the stronger wind becomes the more it pushes against the water. It transfers energy to the water as it makes peaks and whitecaps in the water's surface.
Answer:
Bacteria are economically important as these microorganisms are used by humans for many purposes. The beneficial uses of bacteria include the production of traditional foods such as yogurt, cheese, and vinegar. Microbes are also important in agriculture for the compost and fertilizer production.
Explanation:
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.