9514 1404 393
Answer:
x = 7
Step-by-step explanation:
You solve a linear equation by putting the variable on one side of the equal sign and a constant on the other side. Here, variables and constants are on both sides of the equal sign, so you need to separate them.
The basic idea is that you add the opposite of any term you don't want. Whenever you perform any operation (like "add"), <em>you must do it to both sides of the equation</em>.
We observe that x-terms have coefficients of 10 and 9. We choose to add the opposite of 9x to both sides:
10 -9x -5 = 9x -9x +2
x -5 = 2 . . . . simplify
Now, we still have -5 on the left, where we don't want it. So, we add its opposite (+5) to both sides:
x -5 +5 = 2 +5
x = 7 . . . . simplify
The solution is x = 7.
_____
<em>Additional comment</em>
If we were to end up with an x-coefficient other than 1, we would divide both sides of the equation by that coefficient. This will leave the x-term with a coefficient of 1.
1/16. that is the value that has the most x's on the graph.
Answer: 5 pounds
Step-by-step explanation: because you have to do 0.45 times 5 = 2.25 and then you know that 1.29 times 3 = 3.87 so you add 3.87 + 2.25 and u get 6.12
Answer:
<em>The answers are for option (a) 0.2070 (b)0.3798 (c) 0.3938
</em>
Step-by-step explanation:
<em>Given:</em>
<em>Here Section 1 students = 20
</em>
<em>
Section 2 students = 30
</em>
<em>
Here there are 15 graded exam papers.
</em>
<em>
(a )Here Pr(10 are from second section) = ²⁰C₅ * ³⁰C₁₀/⁵⁰C₁₅= 0.2070
</em>
<em>
(b) Here if x is the number of students copies of section 2 out of 15 exam papers.
</em>
<em> here the distribution is hyper-geometric one, where N = 50, K = 30 ; n = 15
</em>
<em>Then,
</em>
<em>
Pr( x ≥ 10 ; 15; 30 ; 50) = 0.3798
</em>
<em>
(c) Here we have to find that at least 10 are from the same section that means if x ≥ 10 (at least 10 from section B) or x ≤ 5 (at least 10 from section 1)
</em>
<em>
so,
</em>
<em>
Pr(at least 10 of these are from the same section) = Pr(x ≤ 5 or x ≥ 10 ; 15 ; 30 ; 50) = Pr(x ≤ 5 ; 15 ; 30 ; 50) + Pr(x ≥ 10 ; 15 ; 30 ; 50) = 0.0140 + 0.3798 = 0.3938
</em>
<em>
Note : Here the given distribution is Hyper-geometric distribution
</em>
<em>
where f(x) = kCₓ)(N-K)C(n-x)/ NCK in that way all these above values can be calculated.</em>