If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
$120
Step-by-step explanation:
$1,440/12= $120
Hope this helps :)
8 and -8 both of their absolute values are 8
Answer:
(-1, 19) and (3, -81)
Step-by-step explanation:
f(x) = 2x³ − 6x² − 27x
f'(x) = 6x² − 12x − 27
-9 = 6x² − 12x − 27
0 = 6x² − 12x − 18
0 = x² − 2x − 3
0 = (x + 1) (x − 3)
x = -1 or 3
f(-1) = 19
f(3) = -81
The points are (-1, 19) and (3, -81).