<h2>
GIVEN DATA</h2>
Mass of Rocket = m = 215 kg
Mass of Earth = M =
kg
Radius of Earth = R =
m
Gravitational Constant = G = ![6.67*10^-11 \;\;m^3kg^{-1}s^{-2}](https://tex.z-dn.net/?f=6.67%2A10%5E-11%20%5C%3B%5C%3Bm%5E3kg%5E%7B-1%7Ds%5E%7B-2%7D)
Speed of Rocket = 6.42 km/s
Initial Height of Rocket from Earth's Surface = 307 km =
m
Final Height of Rocket from Earth's Surface = 731 km =
m
Initial Height from Earth's Centre =
=
m
Final Height from Earth's Surface =
=
m
(a) Kinetic Energy at Final Height = ![K.E_f](https://tex.z-dn.net/?f=K.E_f)
(b) Maximum Height of Rocket above Earth's Surface = ![H_{max}](https://tex.z-dn.net/?f=H_%7Bmax%7D)
<h2>
EXPLANATION</h2>
Part (a):
As drag air is negligible, energy will be conserved.
ΔE = 0
where, U is the potential energy of the system.
![K.E_f=\;G\frac{mM}{R_f} + \frac{1}{2}mv_i^2\;-\;G\frac{mM}{R_i}\;\;\;\;----------\;(1)](https://tex.z-dn.net/?f=K.E_f%3D%5C%3BG%5Cfrac%7BmM%7D%7BR_f%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%5C%3B-%5C%3BG%5Cfrac%7BmM%7D%7BR_i%7D%5C%3B%5C%3B%5C%3B%5C%3B----------%5C%3B%281%29)
Substituting Values and simplifying,
![K.E_f = 3.665*10^9 J](https://tex.z-dn.net/?f=K.E_f%20%3D%203.665%2A10%5E9%20J)
Part (b):
The rocket will come to rest after reaching the maximum height. Therefore, its final velocity and consequently final kinetic energy will be zero.
![i.e.\;\;v_f = 0\;\;\;\&\;\;\; K.E_f=0](https://tex.z-dn.net/?f=i.e.%5C%3B%5C%3Bv_f%20%3D%200%5C%3B%5C%3B%5C%3B%5C%26%5C%3B%5C%3B%5C%3B%20K.E_f%3D0)
Equation (1) will become,
![0\;=\;\;G\frac{mM}{R_f} + \frac{1}{2}mv_i^2\;-\;G\frac{mM}{R_i}](https://tex.z-dn.net/?f=0%5C%3B%3D%5C%3B%5C%3BG%5Cfrac%7BmM%7D%7BR_f%7D%20%2B%20%5Cfrac%7B1%7D%7B2%7Dmv_i%5E2%5C%3B-%5C%3BG%5Cfrac%7BmM%7D%7BR_i%7D)
![or\;\;\frac{1}{2}v_i^2= GM(\frac{1}{R_i}-\frac{1}{R_f})\\\\\frac{1}{2GM}v_i^2= (\frac{1}{R_i}-\frac{1}{R_f})\\\\\therefore\; R_f = \frac{2GMR_i}{2GM-v_i^2R_i}](https://tex.z-dn.net/?f=or%5C%3B%5C%3B%5Cfrac%7B1%7D%7B2%7Dv_i%5E2%3D%20GM%28%5Cfrac%7B1%7D%7BR_i%7D-%5Cfrac%7B1%7D%7BR_f%7D%29%5C%5C%5C%5C%5Cfrac%7B1%7D%7B2GM%7Dv_i%5E2%3D%20%28%5Cfrac%7B1%7D%7BR_i%7D-%5Cfrac%7B1%7D%7BR_f%7D%29%5C%5C%5C%5C%5Ctherefore%5C%3B%20R_f%20%3D%20%5Cfrac%7B2GMR_i%7D%7B2GM-v_i%5E2R_i%7D)
Substituting values and simplifying,
![R_f = 10.20*10^6 m](https://tex.z-dn.net/?f=R_f%20%3D%2010.20%2A10%5E6%20m)
which is the distance from the Earth's centre. To find the height of rocket from Earth's surface, we simply subtract the Earth's radius from above result.
![H_{max} = R_f - R](https://tex.z-dn.net/?f=H_%7Bmax%7D%20%3D%20R_f%20-%20R)
![H_{max} = 10.20*10^6\;-\;6.37*10^6\\\\H_{max} = 3.83*10^6\;\;m](https://tex.z-dn.net/?f=H_%7Bmax%7D%20%3D%2010.20%2A10%5E6%5C%3B-%5C%3B6.37%2A10%5E6%5C%5C%5C%5CH_%7Bmax%7D%20%3D%203.83%2A10%5E6%5C%3B%5C%3Bm)