Answer:
(1, - 3 )
Step-by-step explanation:
Under a counterclockwise rotation about the origin of 90°
a point (x, y ) → (- y, x ), thus
T(- 3, - 1 ) → T'(1, - 3 )
Hi there!

To find the indefinite integral, we must integrate by parts.
Let "u" be the expression most easily differentiated, and "dv" the remaining expression. Take the derivative of "u" and the integral of "dv":
u = 4x
du = 4
dv = cos(2 - 3x)
v = 1/3sin(2 - 3x)
Write into the format:
∫udv = uv - ∫vdu
Thus, utilize the solved for expressions above:
4x · (-1/3sin(2 - 3x)) -∫ 4(1/3sin(2 - 3x))dx
Simplify:
-4x/3 sin(2 - 3x) - ∫ 4/3sin(2 - 3x)dx
Integrate the integral:
∫4/3(sin(2 - 3x)dx
u = 2 - 3x
du = -3dx ⇒ -1/3du = dx
-1/3∫ 4/3(sin(2 - 3x)dx ⇒ -4/9cos(2 - 3x) + C
Combine:

Answer:
<u>Pressure</u><u> </u><u>is</u><u> </u><u>8</u><u>0</u><u>,</u><u>0</u><u>0</u><u>0</u><u> </u><u>pascals</u><u>.</u>
Step-by-step explanation:
Area:

Pressure:

Step-by-step explanation:
-36.8 + 9.2(2). [as the value of x is 2]
-36.8 + 18.4
= - 18.4 [as the number with the
Negative sign is greater]