The sound waves will get smaller and smaller till there is no more bc it is off.
To calculate instantaneous speed, we need to divide part of the total distance traveled by time. However, we don't want to use the distance of the entire trip, because that will give us average speed.
Answer:
I would say that I agree with the one that said that each hill must be lower than the previous one and use the principle of conservation of energy to explain.
Explanation:
Roller coaster are usually designed such that its total energy remains conserved at any point on the track. Now, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. At certain height on the track, the total energy of the roller coaster is in form of potential energy, which gets converted to kinetic energy as soon as it starts sliding down the hill till get to the hill's endpoint where it has maximum kinetic energy. The cycle of sliding from a high point on the track to a low point on the track means there is potential energy is converted to kinetic energy and kinetic energy then converts back to potential energy and the cycle continues.
However, due to the effect of gravity and frictional force between the track and the coaster, the energy of the coaster is gradually reduces, so it becomes a bit difficult for the coaster to move to the next hill of the same height. It is for this reason that each hill must be lower than the previous one, so that the coaster can overcome the next hill's height with its reduced energy until it loses all its energy and comes to a stop.
<span>0.506 m/s^2
Given the arrangement of rope and the man, he's effectively suspended by a rope from a frictionless pulley. So he's pulling the rope with a force of 371 n causing him to be pulled upwards by his arms. Additionally, the rope goes up to the pulley and back down to the man causing an additional 371 n of force pulling him upwards. So the total force being used to lift the man is 742 n.
Additionally, the man is being pulled downwards by gravity at 9.80 m/s^2. And since he masses 72.0 kg, the downward force in newtons is 72.0 kg * 9.80 m/s^2 = 705.6 n downward.
So the total force being exerted on the man is
742 n - 705.6 n = 36.4 n
To calculate his acceleration, simply divide the number of newtons applied by his mass.
36.4 kg m/s^2 / 72.0 kg = 0.505556 m/s^2
And round to 3 significant figures.
0.505556 m/s^2 = 0.506 m/s^2</span>