In a real system of levers, wheels, or pulleys, the AMA is less than the IMA because of friction.
AMA (Actual mechanical advantage) is found by dividing output force by effort force. The actual mechanical advantage will always be less than the ideal mechanical advantage. The ideal mechanical advantage assumes perfect efficiency which doesn't account for friction, while actual mechanical advantage does. Therefore; the IMA is always greater than the actual mechanical advantage because all machines must overcome friction.
The voltage exists between the fence and the ground. The cow is grounded. The cow is touching the ground, completing the circuit of electricity. <span>When the cow comes into contact with the fence, it becomes an electric ground which sends an electric current into the cow, through the cow, and into the ground. The pain experienced from the shock is due to the current that flows through the cow.</span>
Answer:
Explanation:
To calculate the time it took the car to hit the ground, we use the formula
speed = distance/time
80 m/s = 300 m/time
time = 300/80
time = 3.75 secs
It must have taken the car 3.75 seconds to hit the ground
To determine the horizontal distance of the car before hitting the ground, the same formula will also be used but with the time obtained above (since that was the time it took before hitting the ground)
speed = distance/time
80 = distance/3.75
distance = 3.75 x 80
distance = 300 meters
Answer:
The x-component of
is 56.148 newtons.
Explanation:
From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:
(1)
Where:
,
,
- External forces exerted on the ring, measured in newtons.
- Vector zero, measured in newtons.
If we know that
,
,
and
, then we construct the following system of linear equations:
(2)
(3)
The solution of this system is:
, 
The x-component of
is 56.148 newtons.
Answer:
yes
Explanation:
using law of HC(heat capacity), which is
- heat loss=heat gain
- energy H=MCQ
Where M is mass of substance,C is specific heat capacity, and Q is temperature change
In case of two substance
- the H = Mc*Cc*Q+Mw*Cw*Q(provided the initial and final temperature are given)