Force = mass x acceleration
force = 2500kg x (20m/s / 10m/s)
force = 2500kg x 2m/s^2
force = 5000kg m/s^2 = 5kN
i hope this is right (^^)
The gunstock it’s also called stock or shoulder stock
Answer:
25 N
Explanation:
Work is a product of force and perpendicular distance moved.
W=Fd where F is force exerted and d is perpendicular distance.
However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as
Therefore,
Making F the subject of the formula then
where is the angle of inclination. Substituting 190 J for W then 18 degrees for and 8 m for d then
Answer:
2.63 cm
Explanation:
Hooke's law gives that the force F is equal to cy where c is spring constant and x is extension
Making c the subject of the formula then
Since F is gm but taking the given mass to be F
By substitution now considering F to be 3.3 kg
Refer to the diagram shown below.
Assume that air resistance is ignored.
Note:
The distance, h, of a falling object with initial vertical velocity of zero at time t is
h = (1/2)gt²
where
g = 9.8 m/s²
The initial vertical velocity of the supplies is 0 m/s.
It the time taken for the supplies to reach the ground is t, then
(50 m) = (1/2)*(9.8 m/s²)*(t s)²
Hence obtain
t² = 50/4.9 = 10.2041
t = 3.1944 s
The horizontal distance traveled at a speed of 100 m/s is
d = (100 m/s)*(3.1944 s) = 319.44 m
Answer: 319.4 m (nearest tenth)