You just answered your own question. the answer is 5,250
Answer:
distributive property of multiplication over addition
Step-by-step explanation:
hope this helps! :)
Answer:
There's no options but it will get closed
Step-by-step explanation:
Answer:
Check the explanation
Step-by-step explanation:
(a)Let p be the smallest prime divisor of (n!)^2+1 if p<=n then p|n! Hence p can not divide (n!)^2+1. Hence p>n
(b) (n!)^2=-1 mod p now by format theorem (n!)^(p-1)= 1 mod p ( as p doesn't divide (n!)^2)
Hence (-1)^(p-1)/2= 1 mod p hence [ as p-1/2 is an integer] and hence( p-1)/2 is even number hence p is of the form 4k+1
(C) now let p be the largest prime of the form 4k+1 consider x= (p!)^2+1 . Let q be the smallest prime dividing x . By the previous exercises q> p and q is also of the form 4k+1 hence contradiction. Hence P_1 is infinite
Answer:
P(X = 12) = 0.0064.
Step-by-step explanation:
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
In which is the number of different combinations of x objects from a set of n elements, given by the following formula.
And p is the probability of X happening.
In this problem we have that:
We want P(X = 12). So
P(X = 12) = 0.0064.