Given reactions:
(A) 6CO2(g) + 6H2O(l) + sunlight → C6H12O6(aq) + 6O2(g)
(B) 2H2(g) + O2(g) → 2H2O(g) + energy
Exothermic reactions are those which proceed with the release of heat/energy. In contrast, endothermic reactions proceed with the absorption of energy in the form of heat or light.
Since reaction A required sunlight, it is endothermic. Reaction B releases energy, hence exothermic
Ans: (B)
A is endothermic
B is exothermic
Answer:
Acid are those substances which release H + ions when dissolved in water.
Get that hundooo!
Answer:
Solid metal
Explanation:
The reduced form of metal ions is the metal in elemental state (simple substance). So, if you have a solution with metal ions and they are reduced, you probably will see the deposition of the metal. For example: if you have a solution with sodium ions (Na⁺), and the ions are then reduced, you will see the aparition of a solid phase of metallic sodium (Na(s)), according to the following half-reaction:
Na⁺ + e- → Na(s)
To solve this problem,
we can use the Henderson-Hasselbalch Equation which relates the pH to the measure
of acidity pKa. The equation is given as:<span>
<span>pH = pKa + log ([base]/[acid]) ---> 1</span></span>
Where,
[base] = concentration
of C2H3O2
in molarity or moles
<span>[acid] = concentration of HC2H3O2 in molarity or moles</span>
For the sake of easy calculation, let us assume that:
[base] = 1
[acid] = x
<span>
Therefore using equation 1,
4.24 = 4.74 + log (1 / x)
<span>log (1 / x) = - 0.5
1 / x = 0.6065 </span></span>
x =
1.65<span>
The required ratio of C2H3O2 /HC2H3O2 <span>
is 1:1.65 or 3:5. </span></span>