Complete Question
The complete question is shown on the first uploaded image
Answer:
A
is dimensionally consistent
B
is not dimensionally consistent
C
is dimensionally consistent
D
is not dimensionally consistent
E
is not dimensionally consistent
F
is dimensionally consistent
G
is dimensionally consistent
H
is not dimensionally consistent
Step-by-step explanation:
From the question we are told that
The equation are
![A) \ \ a^3 = \frac{x^2 v}{t^5}](https://tex.z-dn.net/?f=A%29%20%5C%20%20%20%5C%20%20a%5E3%20%20%3D%20%20%5Cfrac%7Bx%5E2%20v%7D%7Bt%5E5%7D)
![B) \ \ x = t](https://tex.z-dn.net/?f=B%29%20%5C%20%20%20%5C%20%20x%20%20%3D%20%20t%20)
![C \ \ \ v = \frac{x^2}{at^3}](https://tex.z-dn.net/?f=C%20%5C%20%5C%20%5C%20v%20%20%3D%20%20%5Cfrac%7Bx%5E2%7D%7Bat%5E3%7D)
![D \ \ \ xa^2 = \frac{x^2v}{t^4}](https://tex.z-dn.net/?f=D%20%5C%20%5C%20%5C%20xa%5E2%20%3D%20%5Cfrac%7Bx%5E2v%7D%7Bt%5E4%7D)
![E \ \ \ x = vt+ \frac{vt^2}{2}](https://tex.z-dn.net/?f=E%20%5C%20%5C%20%5C%20x%20%20%3D%20vt%2B%20%5Cfrac%7Bvt%5E2%7D%7B2%7D)
![F \ \ \ x = 3vt](https://tex.z-dn.net/?f=F%20%5C%20%5C%20%5C%20%20x%20%3D%203vt)
![G \ \ \ v = 5at](https://tex.z-dn.net/?f=G%20%5C%20%5C%20%5C%20%20v%20%3D%20%205at)
![H \ \ \ a = \frac{v}{t} + \frac{xv^2}{2}](https://tex.z-dn.net/?f=H%20%5C%20%5C%20%5C%20%20a%20%20%3D%20%20%5Cfrac%7Bv%7D%7Bt%7D%20%2B%20%5Cfrac%7Bxv%5E2%7D%7B2%7D)
Generally in dimension
x - length is represented as L
t - time is represented as T
m = mass is represented as M
Considering A
![a^3 = (\frac{L}{T^2} )^3 = L^3\cdot T^{-6}](https://tex.z-dn.net/?f=a%5E3%20%20%3D%20%20%28%5Cfrac%7BL%7D%7BT%5E2%7D%20%29%5E3%20%3D%20%20L%5E3%5Ccdot%20T%5E%7B-6%7D)
and ![\frac{x^2v}{t^5 } = \frac{L^2 L T^{-1}}{T^5} = L^3 \cdot T^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2v%7D%7Bt%5E5%20%7D%20%3D%20%20%5Cfrac%7BL%5E2%20L%20T%5E%7B-1%7D%7D%7BT%5E5%7D%20%20%3D%20%20L%5E3%20%5Ccdot%20T%5E%7B-6%7D)
Hence
is dimensionally consistent
Considering B
![x = L](https://tex.z-dn.net/?f=x%20%3D%20%20L)
and
![t = T](https://tex.z-dn.net/?f=t%20%3D%20T)
Hence
is not dimensionally consistent
Considering C
![v = LT^{-1}](https://tex.z-dn.net/?f=v%20%20%3D%20%20LT%5E%7B-1%7D)
and
![\frac{x^2 }{at^3} = \frac{L^2}{LT^{-2} T^{3}} = LT^{-1}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2%20%7D%7Bat%5E3%7D%20%3D%20%20%5Cfrac%7BL%5E2%7D%7BLT%5E%7B-2%7D%20T%5E%7B3%7D%7D%20%20%3D%20%20LT%5E%7B-1%7D)
Hence
is dimensionally consistent
Considering D
![xa^2 = L(LT^{-2})^2 = L^3T^{-4}](https://tex.z-dn.net/?f=xa%5E2%20%20%3D%20L%28LT%5E%7B-2%7D%29%5E2%20%3D%20%20L%5E3T%5E%7B-4%7D)
and
![\frac{x^2v}{t^4} = \frac{L^2(LT^{-1})}{ T^5} = L^3 T^{-5}](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E2v%7D%7Bt%5E4%7D%20%20%3D%20%5Cfrac%7BL%5E2%28LT%5E%7B-1%7D%29%7D%7B%20T%5E5%7D%20%3D%20%20L%5E3%20T%5E%7B-5%7D)
Hence
is not dimensionally consistent
Considering E
![x = L](https://tex.z-dn.net/?f=x%20%3D%20%20L)
;
![vt = LT^{-1} T = L](https://tex.z-dn.net/?f=vt%20%20%3D%20%20LT%5E%7B-1%7D%20T%20%3D%20%20L)
and
![\frac{vt^2}{2} = LT^{-1}T^{2} = LT](https://tex.z-dn.net/?f=%5Cfrac%7Bvt%5E2%7D%7B2%7D%20%20%3D%20%20LT%5E%7B-1%7DT%5E%7B2%7D%20%3D%20%20LT)
Hence
is not dimensionally consistent
Considering F
![x = L](https://tex.z-dn.net/?f=x%20%3D%20%20L)
and
Note in dimensional analysis numbers are
not considered
Hence
is dimensionally consistent
Considering G
![v = LT^{-1}](https://tex.z-dn.net/?f=v%20%20%3D%20%20LT%5E%7B-1%7D)
and
![at = LT^{-2}T = LT^{-1}](https://tex.z-dn.net/?f=at%20%3D%20%20LT%5E%7B-2%7DT%20%3D%20%20LT%5E%7B-1%7D)
Hence
is dimensionally consistent
Considering H
![a = LT^{-2}](https://tex.z-dn.net/?f=a%20%3D%20%20LT%5E%7B-2%7D)
,
![\frac{v}{t} = \frac{LT^{-1}}{T} = LT^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bv%7D%7Bt%7D%20%20%3D%20%20%5Cfrac%7BLT%5E%7B-1%7D%7D%7BT%7D%20%20%3D%20%20LT%5E%7B-2%7D)
and
![\frac{xv^2}{2} = L(LT^{-1})^2 = L^3T^{-2}](https://tex.z-dn.net/?f=%5Cfrac%7Bxv%5E2%7D%7B2%7D%20%3D%20%20L%28LT%5E%7B-1%7D%29%5E2%20%3D%20%20L%5E3T%5E%7B-2%7D)
Hence
is not dimensionally consistent