1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
geniusboy [140]
3 years ago
7

Given here are a set of sample data: 12.0, 18.3, 29.6, 14.3, and 27.8. the sample standard deviation for this data is equal to _

____.

Mathematics
1 answer:
disa [49]3 years ago
3 0
The answer is 7.9306

Using the formula in the attached:
Where: xi = sample value; μ = sample mean; n = sample size

1.) Calculate the mean first:
μ = 12.0 + 18.3 + 29.6 + 14.3 + 27.8 / 5
   = 102 / 5
μ = 20.4

2.) Using the mean, calculate (xi - μ)² for each value:
(12.0 - 20.4)² = 70.56
(18.3 - 20.4)² = 4.41
(29.6 - 20.4)² = 84.64
(14.3 - 20.4)² = 37.21
(27.8 - 20.4)² = 54.76

3.) Sum the squared differences and divide by n - 1.
μ = 70.56 + 4.41 + 84.64 + 37.21 + 54.76
   = 251.58 / 5-1
μ = 62.895 (this is now called sample variance)

4.) Get the square root of the sample variance:
 √62.895 = 7.9306

You might be interested in
Can someone please give me the answer for this im so confused
liubo4ka [24]
The correct answer is 400 yrds
Hope this helps
6 0
3 years ago
Someone help please!!!
Sati [7]

Answer:

<em>y</em><em> </em><em>intercep</em><em>t</em><em> </em><em>=</em><em> </em><em> </em><em>-</em><em>5</em><em> </em>

<em>slope</em><em>=</em><em> </em><em>4</em><em> </em>

<em>equa</em><em>tion</em><em>:</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em>

EXPLANATION:

<em>FIRST</em><em>,</em><em> </em><em>you</em><em> </em><em>must </em><em>write</em><em> </em><em>the</em><em> </em><em>formula </em><em>for</em><em> </em><em>a</em><em> </em><em>linear</em><em> </em><em>graph</em><em> </em><em> </em><em>,</em><em> </em><em>whic</em><em>h</em><em> </em><em>is</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>m</em><em>(</em><em>x</em><em>)</em><em> </em><em>+</em><em> </em><em>c</em>

<em>where</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>any</em><em> </em><em>y</em><em> </em><em>component</em><em> </em><em>and</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>it's </em><em>correspondi</em><em>ng</em><em> </em><em>x</em><em> </em><em>componen</em><em>t</em><em> </em><em>,</em><em> </em><em>m</em><em> </em><em>is</em><em> </em><em>the </em><em>gradien</em><em>t</em><em> </em><em>or</em><em> </em><em>slope</em><em> </em><em>and</em><em> </em><em>c</em><em> </em><em>is</em><em> </em><em>the </em><em>consta</em><em>nt</em><em> </em><em>or</em><em> </em><em>y</em><em> </em><em>interce</em><em>pt</em><em>.</em>

<em>SOLUT</em><em>ION</em><em>:</em>

<em>y</em><em> </em><em>=</em><em> </em><em>mx</em><em> </em><em>+</em><em> </em><em>c</em>

<em>findi</em><em>ng</em><em> </em><em>the</em><em> </em><em>gradie</em><em>nt</em><em> </em><em>(</em><em>m</em><em>)</em>

<em>m</em><em> </em><em>=</em><em> </em><em><u>y2</u></em><em><u> </u></em><em><u>-</u></em><em><u> </u></em><em><u>y1</u></em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x2</em><em> </em><em>-</em><em> </em><em>x1</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>(</em><em> </em><em>(</em><em>-</em><em>1</em><em>)</em><em>-</em><em>(</em><em>-</em><em>5</em><em>)</em><em> </em><em>)</em><em> </em><em>÷</em><em> </em><em>(</em><em>1</em><em>-</em><em>0</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>-</em><em>1</em><em>+</em><em>5</em><em> </em><em>÷</em><em> </em><em>1</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>4</em>

<em>There</em><em>fore</em><em>,</em><em> </em><em>the</em><em> </em><em>slop</em><em>e</em><em> </em><em>is</em><em> </em><em>4</em>

<em>findi</em><em>ng</em><em> </em><em>the</em><em> </em><em>y</em><em> </em><em>interce</em><em>pt</em><em>.</em>

<em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>+</em><em> </em><em>c</em>

<em> </em><em>in</em><em> </em><em>the </em><em>abo</em><em>ve</em><em> </em><em>equation</em><em>,</em><em> </em><em>I </em><em>substitut</em><em>ed</em><em> </em><em>the</em><em> </em><em>val</em><em>ue</em><em> </em><em>I </em><em>had</em><em> </em><em>for</em><em> </em><em>the</em><em> </em><em>slope </em><em>or</em><em> </em><em>the</em><em> </em><em>gradient</em><em> </em><em>or</em><em> </em><em>m</em><em>.</em>

<em>SO</em><em> </em><em>NOW</em><em> </em><em>IM</em><em> </em><em>ABO</em><em>UT</em><em> </em><em>TO</em><em> </em><em>FIND</em><em> </em><em>C</em>

<em><u>TO</u></em><em><u> </u></em><em><u>FIND</u></em><em><u> </u></em><em><u>C</u></em><em><u>,</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em><em><u>MUST</u></em><em><u> </u></em><em><u>FIRST</u></em><em><u> </u></em><em><u>PICK</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>CORRESP</u></em><em><u>ONDING</u></em><em><u> </u></em><em><u>Y</u></em><em><u> </u></em><em><u>AND</u></em><em><u> </u></em><em><u>X</u></em><em><u> </u></em><em><u>COMPO</u></em><em><u>NENT</u></em><em><u>.</u></em>

<em><u>I</u></em><em><u> </u></em><em><u>CHOO</u></em><em><u>SE</u></em><em><u> </u></em><em><u>MY</u></em><em><u> </u></em><em>Y</em><em> </em><em>=</em><em> </em><em>3</em><em> </em><em>and</em><em> </em><em>X</em><em> </em><em>=</em><em> </em><em>2</em>

<em> </em><em> </em><em>Now</em><em> </em><em>I'm </em><em>goi</em><em>ng</em><em> </em><em>to</em><em> </em><em>substitute</em><em> </em><em>those</em><em> </em><em>valu</em><em>es</em><em> </em><em>into</em><em> </em><em>the</em><em> </em><em>formul</em><em>a</em><em>.</em>

<em> </em><em>(</em><em>3</em><em>)</em><em> </em><em>=</em><em> </em><em>4</em><em>(</em><em>2</em><em>)</em><em> </em><em> </em><em>+</em><em> </em><em>C</em>

<em>since</em><em> </em><em>it's </em><em>an</em><em> </em><em>equation</em><em> </em><em>with</em><em> </em><em>one</em><em> </em><em>variable</em><em>,</em><em> </em><em>no</em><em> </em><em>need </em><em>for</em><em> </em><em>simul</em><em>taneous</em><em> equations</em><em>.</em>

<em> </em><em>3</em><em> </em><em>=</em><em> </em><em>8</em><em> </em><em>+</em><em> </em><em>c</em>

<em> </em><em> </em><em> </em><em>3</em><em>-</em><em>8</em><em> </em><em>=</em><em> </em><em>c</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>-</em><em>5</em><em> </em><em>=</em><em> </em><em>c</em>

<em> </em><em> </em>

<em>SO</em><em> </em><em>THATS</em><em> </em><em>HOW</em><em> </em><em>WE</em><em> </em><em>ARRIVED</em><em> </em><em>AT</em><em> </em><em> </em><em>-</em><em>5</em><em> </em><em>AND</em><em> </em><em>4</em><em>.</em>

<em> </em><em>WITH</em><em> </em><em>THAT</em><em>,</em><em> </em><em>the</em><em> </em><em>equa</em><em>tion</em><em> </em><em>of</em><em> </em><em>the </em><em>line</em><em> </em><em>is</em><em> </em><em>y</em><em> </em><em>=</em><em> </em><em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>5</em><em>.</em>

<em> </em>

<em>I</em><em> </em><em>HOPE</em><em> </em><em>IT</em><em> </em><em>WAS</em><em> </em><em>HELPFU</em><em>L</em><em>.</em><em />

4 0
2 years ago
Eli and Karl each throw a basketball straight up in the air at the same time. Eli is standing on a deck and the height of his ba
tino4ka555 [31]
We are to find the time at which the height of basketball thrown by Eli and Karl is equal. We have the functions which model the heights of both basketballs. So by equating the functions representing the height of both basketballs we can find the value of x from that equation at which the height is same for both basketballs.

-4.9 x^{2} +12x+2.5=-4.9 x^{2} +14x \\  \\ &#10;12x+2.5=14x \\  \\ &#10;2.5=2x \\  \\ &#10;x=1.25

Thus after 1.25 seconds the height of basketballs thrown by Eli and Karl will be at the same height. This can be verified by finding the heights of both at x=1.25

For Eli:
Height=f(1.25)=-4.9 (1.25)^{2}+12(1.25)+2.5=9.84375

For Karl:
Height=f(1.25)=-4.9 (1.25)^{2}+14(1.25)=9.84375

Thus height of both basketball is equal after 1.25 seconds


5 0
3 years ago
Read 2 more answers
Factorise<br><br> x^3 - 2x^2 -x+2
tankabanditka [31]

Answer:

Solution given:

x^3 - 2x^2 -x+2

take common from two each term

x²(x-2)-1(x-2)

take common again and keep left one on other bracket

<u>(x-2)(x²-1) or (x-1)(x+1)(x-2)</u> is a required answer.

note:using formula a²-b²=(a+b)(a-b) for x²-1.

5 0
2 years ago
Read 2 more answers
Someone please help!!
Blizzard [7]

Answer:

thanks for the free points

Step-by-step explanation:

6 0
2 years ago
Other questions:
  • I'll give u 50 POINTS and mark u brainliest if answer this asap
    7·1 answer
  • 7+a/3=5<br>A. -2<br>B. 3 <br>C. -6<br>D. 15<br>I need the answer​
    12·2 answers
  • Fanning + medal
    7·2 answers
  • The measure of angle F is 130 degrees.
    11·2 answers
  • What is the value of x?
    9·2 answers
  • According to this diagram, what is tan 74
    13·2 answers
  • AREA of circles pls help​
    15·2 answers
  • Noor, Layla, and Diego play a trivia game. Noor’s score is -2. Layla’s score is 3/4 of Noor’s score. Diego’s score is 2/3 of Lay
    10·1 answer
  • PLEASE HELP ME ASAP!!!! <br> Will mark brain list!!!!!! please help asap!
    14·1 answer
  • What is the length of segment SA? show your work please I will give you brainliest​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!