Answer:
m<1 = 39
m<2 = 51
Step-by-step explanation:
For this problem, you need to understand that a little square in the bottom of two connecting lines represents a right-angle (an angle this 90 degrees). This problem, gives you two relationships for angle 1 and angle 2 within a right-angle. Using this information, we can solve for the measures of the two angles.
Let's write the two relations:
m< 1 = 3x
m< 2 = x + 38
And now let's right an equation that represents the two angles to the picture:
m<1 + m<2 = 90
Using this information, let's substitute the expressions we have for the two angles and solve for x. Once we have the value of x, we can find the measure of the two angles.
m< 1 + m< 2 = 90
(3x) + (x + 38) = 90
3x + x + 38 = 90
x ( 3 + 1 ) + 38 = 90
x ( 4 ) + 38 = 90
4x + 38 = 90
4x + 38 - 38 = 90 - 38
4x = 90 - 38
4x = 52
4x * (1/4) = 52 * (1/4)
x = 52 * (1/4)
x = 13
Now that we have the value of x, we simply plug it back into our expressions for the m<1 and m<2.
m<1 = 3x = 3(13) = 39
m<2 = x + 38 = 13 + 38 = 51
And we can verify this is correct with the relational equation:
m<1 + m<2 = 90
39 + 51 ?= 90
90 == 90
Hence, we have found the values of m<1 and m<2.
Cheers.
Answer:
it may be 3
Step-by-step explanation:
it may be bcz am not much good but still just trying
Answer:



this is the answer
hope this is helpful for you.
Answer:
The explanation of this question is given below in the explanation section
Step-by-step explanation:
The data is given in form of length and width.
Then, we need to convert it into improper fraction.
As you know that, the improper fraction is a fraction where the numerator (top number) is larger than the denominator (bottom number).
So, we converted it into improper fraction i.e.
Improper fraction= lenght/width
Then we reduce the fraction into lowest form and shown in ratio as depicted in attached picture with this solution.