Remember your formula is 180(n-2) where n=number of sides. So start out by dividing by 180, then add 2 to get the sides.
Answer:
x should be cut at 2221.5 to minimize the total combined area, and at 5050 to maximize it.
Step-by-step explanation:
Let x be the length of wire that is cut to form a circle within the 5050 wire, so 5050 - x would be the length to form a square.
A circle with perimeter of x would have a radius of x/(2π), and its area would be

A square with perimeter of 5050 - x would have side length of (5050 - x)/4, and its area would be

The total combined area of the square and circles is

To find the maximum and minimum of this, we just take the 1st derivative, and set it to 0


Multiple both sides by 8π and we have



At x = 2221.5:
= 392720 + 500026 = 892746 [/tex]
At x = 0, 
At x = 5050, 
As 892746 < 1593906 < 2029424, x should be cut at 2221.5 to minimize the total combined area, and at 5050 to maximize it.
Area is found by multiplying the length by the width.
Length = AB = 12
Height = 9
Area = 12 *9 = 108 units^2
The answer is D.
Answer:
Thanks for the points
have a good day :)
Step-by-step explanation: