<h3><em>(</em><em>sinx</em><em> </em><em>-</em><em> </em><em>cosx</em><em>)</em><em>^</em><em>2</em><em> </em><em>=</em><em> </em><em>(</em><em>sinx</em><em>)</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>(</em><em>cosx</em><em>)</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>2</em><em>s</em><em>i</em><em>n</em><em>x</em><em>c</em><em>o</em><em>s</em><em>x</em><em> </em><em>=</em><em> </em><em>1</em><em>-</em><em>2</em><em>s</em><em>i</em><em>n</em><em>x</em><em>c</em><em>o</em><em>s</em><em>x</em></h3>
Answer:
The number of ways the arrangements can be made of the letters of the word'WONDERFUL' such that the letter R is always next to E is 10,080 ways
Step-by-step explanation:
We need to find the number of ways the arrangements can be made of the letters of the word'WONDERFUL' such that the letter R is always next to E.
There are 9 letters in the word WONDERFUL
There is a condition that letter R is always next to E.
So, We have two letters fixed WONDFUL (ER)
We will apply Permutations to find ways of arrangements.
The 7 letters (WONDFUL) can be arranged in ways : ⁷P₇ = 7! = 5040 ways
The 2 letters (ER) can be arranged in ways: ²P₂ =2! = 2 ways
The number of ways 'WONDERFUL' can be arranged is: (5040*2) = 10,080 ways
So, the number of ways the arrangements can be made of the letters of the word'WONDERFUL' such that the letter R is always next to E is 10,080 ways
Answer:
6000 students
Step-by-step explanation:
Since the added value of the total number of students would be 5691, so if you wound up, it would be around 6,000
0.00305 and 8920000...if the exponents are negative 3 and 6
Answer:
wait huh whats ur question?
Step-by-step explanation: