Let

where we assume |r| < 1. Multiplying on both sides by r gives

and subtracting this from
gives

As n → ∞, the exponential term will converge to 0, and the partial sums
will converge to

Now, we're given


We must have |r| < 1 since both sums converge, so


Solving for r by substitution, we have


Recalling the difference of squares identity, we have

We've already confirmed r ≠ 1, so we can simplify this to

It follows that

and so the sum we want is

which doesn't appear to be either of the given answer choices. Are you sure there isn't a typo somewhere?
Area of the parabolic region = Integral of [a^2 - x^2 ]dx | from - a to a =
(a^2)x - (x^3)/3 | from - a to a = (a^2)(a) - (a^3)/3 - (a^2)(-a) + (-a^3)/3 =
= 2a^3 - 2(a^3)/3 = [4/3](a^3)
Area of the triangle = [1/2]base*height = [1/2](2a)(a)^2 = <span>a^3
ratio area of the triangle / area of the parabolic region = a^3 / {[4/3](a^3)} =
Limit of </span><span><span>a^3 / {[4/3](a^3)} </span>as a -> 0 = 1 /(4/3) = 4/3
</span>
Answer:
free points
Step-by-step explanation:
thanksssss for the points
Answer:
see below
Step-by-step explanation:
given:
radius of a circle = 3cm
find:
1. diameter
2. radius
3. r²
1) diameter = twice the radius = 2 r = 2 (3) = 6 cm
2) radius = 3 cm
3) r² = 3² = 9 cm
I think p will 2 is this 8th grade math ?