1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pochemuha
3 years ago
10

Tyler’s brother earns $12 per hour. The store offers him a raise— a 5% increase per hour. After the raise, how much will Tyler’s

brother make per hour?
Mathematics
2 answers:
Artyom0805 [142]3 years ago
6 0
Tyler's bother will now make $12.60 per hour
rjkz [21]3 years ago
5 0

Answer: $12.60

Step-by-step explanation:

We are given that , Tyler’s brother earns $12 per hour.

Also, The store offers him a raise— a 5% increase per hour.

it means there is an 5% increase in his earnings.

Now, Increase in earnings per hour = 5% of  $12

= 0.05\times\$12= \$0.60

⇒Increase in earnings per hour = $0.60

Now, After the raise, Tyler’s brother will make per hour= Previous earnings + Increase in earning

= $12 +  $0.6= $12.60

Hence, After the raise, Tyler’s brother will make $12.60 per hour.

You might be interested in
4) How much interest does a $276 investment earn at 9% over seven<br> years?"<br> 2
Mice21 [21]

Answer: 24.84

Step-by-step explanation: 276%of 9 is 24.84

4 0
2 years ago
Phoebe wants to get atleast a grade of 90 in the math class. Her grade will be the average of two tests. She scored a 94 on the
marin [14]
First things first, you will have 94 + x. Place those on top of a fraction bar and on the bottom put the two numbers over 2. So you have 94 + x over 2. Then, write the symbol ‘greater than or equal to’ and on the other side place your 90. So, 90 + x over 2 is greater than or equal to 90. This is a difficult thing to write out and explain so I hope this makes sense. :)
7 0
3 years ago
Read 2 more answers
Simplify the expression.
Nana76 [90]
The answer is the A. I hope this helps!
6 0
3 years ago
I NEED HELP WITH THIS PLEASEEE!!!!!
Galina-37 [17]
Answers:
The area for the square on the left is 81m^2. This is found because all sides of this square are the same, so the length and width are the same. Just multiply 9 x 9.

The area for the triangle is 31.5m^2. We find the left side is 9 meters because the triangle shares the same side as the square on the left side. We also find the bottom side is 7 because that is the length of each side of that square because all sides on a square is the same. We then multiply 9 times 7, getting 63, we divide this by 2 because it’s a triangle.

The square on the right has the area of 225 because both length and width is 15.

4 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
2 years ago
Other questions:
  • Simplify the equation <img src="https://tex.z-dn.net/?f=%5Csqrt%7B245c%5E3%7D" id="TexFormula1" title="\sqrt{245c^3}" alt="\sqrt
    5·2 answers
  • Solve for n: 6n-5p/11t=c
    12·2 answers
  • Find the slope of the line passing through each pair of points. (9,4) and (5,-3).
    14·1 answer
  • A man cycles to a village at 18km/hr and returns at 12km/hr. If he takes 6 tahrs
    5·1 answer
  • If MrBeast bought 69 Lamborghini's and bought 420 Rolex watches how many items in all would he have bought altogether?
    13·2 answers
  • PLEASE HELP!! WILL GIVE BRAINLIEST
    6·1 answer
  • PLEASE HELP WILL MARK BRAINLIEST PLZ PLZ PLZ!!
    7·2 answers
  • The traffic-control monitor on the freeway shows 200 vehicles per minute passing the camera in 5 minutes. Of those vehicles, on
    8·1 answer
  • I WILL MARK BRAINLIEST
    15·1 answer
  • Which set of numbers are opposites?<br> |-6| and 6<br> -6 and 6<br> -6 and 0<br> 6 and 0
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!