1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
12

A company pays its commercial agents 5% of any deal. What should the value of a deal be for the agent to earn $2000?

Mathematics
1 answer:
Nataly_w [17]3 years ago
6 0
The value of the deal should be $40,000.


remember that 5% as a decimal is .05.Let x = value of deal
The equation would be .05x = $2000 
Divide both sides by 0.05.
x=40,000       
 
You might be interested in
Find the commission.
juin [17]

Answer:

63.9

Step-by-step explanation:

Convert 9% to a decimal: 0.09

710×.09=63.9

Please give me brainliest

3 0
2 years ago
Please help !!! I’ll mark you as brainliest if correct
Leona [35]

Answer:

0

Step-by-step explanation:

When you multiply any number by 0, the answer is always 0.

3 0
3 years ago
Read 2 more answers
Plzz help asap.......​
SSSSS [86.1K]

Answer:

29.78 feet

Step-by-step explanation:

4 0
3 years ago
If 7(x-7)=-15 then x =
soldi70 [24.7K]

7(x-7)=-15

distribute

7x-49 =-15

add 49 to each side

7x =34

divide by 7

x = 34/7

x = 4 6/7

6 0
2 years ago
The lifetime X (in hundreds of hours) of a certain type of vacuum tube has a Weibull distribution with parameters α = 2 and β =
stich3 [128]

I'm assuming \alpha is the shape parameter and \beta is the scale parameter. Then the PDF is

f_X(x)=\begin{cases}\dfrac29xe^{-x^2/9}&\text{for }x\ge0\\\\0&\text{otherwise}\end{cases}

a. The expectation is

E[X]=\displaystyle\int_{-\infty}^\infty xf_X(x)\,\mathrm dx=\frac29\int_0^\infty x^2e^{-x^2/9}\,\mathrm dx

To compute this integral, recall the definition of the Gamma function,

\Gamma(x)=\displaystyle\int_0^\infty t^{x-1}e^{-t}\,\mathrm dt

For this particular integral, first integrate by parts, taking

u=x\implies\mathrm du=\mathrm dx

\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}

E[X]=\displaystyle-xe^{-x^2/9}\bigg|_0^\infty+\int_0^\infty e^{-x^2/9}\,\mathrm x

E[X]=\displaystyle\int_0^\infty e^{-x^2/9}\,\mathrm dx

Substitute x=3y^{1/2}, so that \mathrm dx=\dfrac32y^{-1/2}\,\mathrm dy:

E[X]=\displaystyle\frac32\int_0^\infty y^{-1/2}e^{-y}\,\mathrm dy

\boxed{E[X]=\dfrac32\Gamma\left(\dfrac12\right)=\dfrac{3\sqrt\pi}2\approx2.659}

The variance is

\mathrm{Var}[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+E[X]^2]=E[X^2]-E[X]^2

The second moment is

E[X^2]=\displaystyle\int_{-\infty}^\infty x^2f_X(x)\,\mathrm dx=\frac29\int_0^\infty x^3e^{-x^2/9}\,\mathrm dx

Integrate by parts, taking

u=x^2\implies\mathrm du=2x\,\mathrm dx

\mathrm dv=xe^{-x^2/9}\,\mathrm dx\implies v=-\dfrac92e^{-x^2/9}

E[X^2]=\displaystyle-x^2e^{-x^2/9}\bigg|_0^\infty+2\int_0^\infty xe^{-x^2/9}\,\mathrm dx

E[X^2]=\displaystyle2\int_0^\infty xe^{-x^2/9}\,\mathrm dx

Substitute x=3y^{1/2} again to get

E[X^2]=\displaystyle9\int_0^\infty e^{-y}\,\mathrm dy=9

Then the variance is

\mathrm{Var}[X]=9-E[X]^2

\boxed{\mathrm{Var}[X]=9-\dfrac94\pi\approx1.931}

b. The probability that X\le3 is

P(X\le 3)=\displaystyle\int_{-\infty}^3f_X(x)\,\mathrm dx=\frac29\int_0^3xe^{-x^2/9}\,\mathrm dx

which can be handled with the same substitution used in part (a). We get

\boxed{P(X\le 3)=\dfrac{e-1}e\approx0.632}

c. Same procedure as in (b). We have

P(1\le X\le3)=P(X\le3)-P(X\le1)

and

P(X\le1)=\displaystyle\int_{-\infty}^1f_X(x)\,\mathrm dx=\frac29\int_0^1xe^{-x^2/9}\,\mathrm dx=\frac{e^{1/9}-1}{e^{1/9}}

Then

\boxed{P(1\le X\le3)=\dfrac{e^{8/9}-1}e\approx0.527}

7 0
2 years ago
Other questions:
  • Last one still need major help
    9·1 answer
  • PLEASE HELP! I'm so confused!
    5·1 answer
  • All books in a store are being discounted by 40%. let x represent the regular price of any book in the store which expression de
    10·1 answer
  • What is the percent of 45/100?
    11·1 answer
  • Please answer the question from the attachment.
    14·1 answer
  • On a map of Arizona, the scale is 1 inch = 5 inches. The distance between Brady's house and Flagstaff is 23 inches on the map. W
    7·1 answer
  • Explain how to calculate the volume of a sphere.
    15·1 answer
  • Help me PLSSSSSSSSSSSSS
    8·2 answers
  • Please help, quickly if possible
    7·2 answers
  • Plis necesito ayuda en esta tarea:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!