308 slices would be sold.
38*8= 304, plus 4 slices in half a pizza makes 308 slices.
Answer:
the answer is Length of each string = 195/8 inch
Total length= 100*12 = 1200 inch
Number of pieces = Total length/ Length of each piece = 1200/ (195/8)= (1200*8)/195
Step-by-step explanation:
Answer: If you mean to multiply, the answer is 8/15.
Step-by-step explanation:
Multiply numerator by numerator and denominator by denominator.
2 x 4 = 8
3 x 5 = 15
ANSWER: 8/15
We want to find the values of a, b, c, and d such that the given matrix product is equal to a 2x2 identity matrix. We will solve a system of equations to find:
<h3>
Presenting the equation:</h3>
Basically, we want to solve:
![\left[\begin{array}{cc}-1&2\\a&1\end{array}\right]*\left[\begin{array}{cc}b&c\\1&d\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5Ca%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db%26c%5C%5C1%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix product will be:
![\left[\begin{array}{cc}-b + 2&-c + 2d\\a*b + 1&a*c + d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-b%20%2B%202%26-c%20%2B%202d%5C%5Ca%2Ab%20%2B%201%26a%2Ac%20%2B%20d%5Cend%7Barray%7D%5Cright%5D)
Then we must have:
-b + 2 = 1
This means that:
b = 2 - 1 = 1
We also need to have:
a*b + 1 = 0
we know the value of b, so we just have:
a*1 + b = 0
Now the two remaining equations are:
-c + 2d = 0
a*c + d = 1
Replacing the value of a we get:
-c + 2d = 0
-c + d = 1
Isolating c in the first equation we get:
c = 2d
Replacing that in the other equation we get:
-(2d) + d = 1
-d = 1
Then:
c = 2d = 2*(-1) = -2
So the values are:
If you want to learn more about systems of equations, you can read:
brainly.com/question/13729904
Answer:
a) P(X∩Y) = 0.2
b)
= 0.16
c) P = 0.47
Step-by-step explanation:
Let's call X the event that the motorist must stop at the first signal and Y the event that the motorist must stop at the second signal.
So, P(X) = 0.36, P(Y) = 0.51 and P(X∪Y) = 0.67
Then, the probability P(X∩Y) that the motorist must stop at both signal can be calculated as:
P(X∩Y) = P(X) + P(Y) - P(X∪Y)
P(X∩Y) = 0.36 + 0.51 - 0.67
P(X∩Y) = 0.2
On the other hand, the probability
that he must stop at the first signal but not at the second one can be calculated as:
= P(X) - P(X∩Y)
= 0.36 - 0.2 = 0.16
At the same way, the probability
that he must stop at the second signal but not at the first one can be calculated as:
= P(Y) - P(X∩Y)
= 0.51 - 0.2 = 0.31
So, the probability that he must stop at exactly one signal is:
