The answer is...
three and seventy five hundredths
Nice handwriting!
I am pretty sure that its 18(?)
(I'm just a pleb, sorry if its wrong)
Let's actually find the line of best fit...
m=(nΣyx-ΣyΣx)/(nΣx^2-ΣxΣx)
m=(11*836-130*55)/(11*385-3025)
m=2046/1210
m=93/55
b=(Σy-93Σx/55)/n
b=(55Σy-93Σx)/(55n)
b=(7150-5115)/(55*11)
b=185/55, so the line of best fit is:
y=(93x+185)/55
A) The approximate y-intercept (the value of y when x=0) is 185/55≈3.36.
Which means that those who do not practice at all will win about 3.36 times
B) y(13)=(93x+185)/55
y(13)≈25.34
So after 13 months of practice one would expect to win about 25.34 times.
Answer: 35 the digits both together = 8
Reverse it and add 2.
53+2 =55
55- 35 = 20
The required answer is 35 :)
Step-by-step explanation:
Answer:
1. When we reflect the shape I along X axis it will take the shape I in first quadrant, and then if we rotate the shape I by 90° clockwise, it will take the shape again in second quadrant . So we are not getting shape II. This Option is Incorrect.
2. Second Option is correct , because by reflecting the shape I across X axis and then by 90° counterclockwise rotation will take the Shape I in second quadrant ,where we are getting shape II.
3. a reflection of shape I across the y-axis followed by a 90° counterclockwise rotation about the origin takes the shape I in fourth Quadrant. →→ Incorrect option.
4. This option is correct, because after reflecting the shape through Y axis ,and then rotating the shape through an angle of 90° in clockwise direction takes it in second quadrant.
5. A reflection of shape I across the x-axis followed by a 180° rotation about the origin takes the shape I in third quadrant.→→Incorrect option