Answer:
a) V = -0.227 mV
b) V = -0.5169 mV
Explanation:
a)
Inside a sphere with a uniformly distributed charge density, electric field is radial and has a magnitude
E = (qr) / (4πε₀R³)
As we know that
V = -
By solving above equation, we get
V = (-qr²) / (8πε₀R³)
When
R = 1.81 cm
r = 1.2 cm
q = +2.80 fC
ε₀ = 8.85 × 10⁻¹²
V = (-2.80 × 10⁻¹⁵ × (1.2 × 10⁻²)²) / (8 × 3.14 × 8.85 × 10⁻¹² × (1.81 × 10⁻²)³)
V = -2.27 × 10⁻⁴ V
V = -0.227 mV
b)
When
r = R
R = 1.81 cm
q = +2.80 fC
ε₀ = 8.85 × 10⁻¹²
V = (-qR²) / (8πε₀R³)
V = (-q) / (8πε₀R)
V = (-2.80 × 10⁻¹⁵) / (8 × 3.14 × 8.85 × 10⁻¹² × (1.81 × 10⁻²))
V = -5.169 × 10⁻⁴ V
V = -0.5169 mV
Hi welcome to Brainly!
I believe the correct answer to your question is the Bose-Einstein condensation
Hope this helps!
Answer:
there are over 100 billion stars in our galaxy.
There is no displacement. The frog is back where it began.
Answer:
In this scenario adding the dielectric material in between the plates will have no effect on the capacitance of the plates since the voltage remains unchanged
Explanation:
Normally Introducing a dielectric into a capacitor decreases the electric field, which decreases the voltage, which increases the capacitance.
A capacitor with a dielectric stores the same charge as one without a dielectric, but at a lower voltage.
Voltage and capacitance are inversely proportional when charge is constant.
Now in this case the voltage remains the same hence the charges remain the same also because voltage is inversely proportional to capacitance