1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
8

A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof 1.15 s later. Ignor

e air resistance.
a) If the height of the building is 19.6 m, what must the initial speed of the first ball be if both are to hit the ground at the same time
b) what must the height of the building for both balls to reach the groung at the same time if the initial velocity of the first ball is now 8.6 m/s​
Physics
1 answer:
pogonyaev3 years ago
3 0

Answer:

a) v₀ = 9.2 m/s

b) y₀ = 7.9 m

Explanation:

The position of the balls is given by the equation:

y =- \frac{1}{2} gt^2 + v_0 t + y_0

where:

acceleration g = 9.8 m/s²

time t

initial velocity v₀

initial height y₀

a) lets divide (a) in two parts:

1.part: How long will it take the second ball to fall down?

v_0 = 0, y = 0\\0=- \frac{1}{2} gt^2 + y_0\\ t = \sqrt{\frac{2y_0}{g}}

2. part: At time t from part1 + 1.15s, the first ball should land on the ground.

y = 0, y_0 = 19.6, t = \sqrt{\frac{2y_0}{g}} + 1.15\\ 0 =- \frac{1}{2} gt^2 + v_0t + y_0

This leaves only one unknown: v₀

v_0 =\frac{1}{t}(\frac{1}{2} gt^2 - y_0)\\ v_0 = 9.2 \frac{m}{s}

b)again, lets divide in two parts

1.part: Where will ball1 be relative to ball2 in 1.15s:

t = 1.15s, v_0 = 8.6 m/s\\y= -\frac{1}{2} gt^2 + v_0t + y_0\\ \delta y = y - y_0 =v_0t -\frac{1}{2} gt^2

and how fast will it go:

v' = -gt + v_0

2.part: Now we can plug in to the equation for the position of the two balls. Let's start with the second ball first:

0 = -\frac{1}{2} gt^2 + y_0\\ y_0 = \frac{1}{2} gt^2

Now let's use this result in the equation for the first ball:

0 = - \frac{1}{2} gt^2 + v't + y_0 + \delta y = - \frac{1}{2} gt^2 + v't + \frac{1}{2} gt^2 + \delta y\\ 0 = v't + \delta y\\ t =- \frac{\delta y}{v'} \\ y_0 = \frac{1}{2} g(\frac{\delta y}{v'})^2\\ y_0 = 7.9m

You might be interested in
A copper wire of resistivity 2.6 × 10-8 Ω m, has a cross sectional area of 35 × 10-4 cm2
KengaRu [80]

Answer:

the length of the wire is 134.62 m.

Explanation:

Given;

resistivity of the copper wire, ρ = 2.6 x 10⁻⁸ Ωm

cross-sectional area of the wire, A  = 35 x 10⁻⁴ cm² = ( 35 x 10⁻⁴) x 10⁻⁴ m²

resistance of the wire, R = 10Ω

The length of the wire is calculated as follows;

R = \frac{\rho L}{A} \\\\L = \frac{RA}{\rho} \\\\L= \frac{10 \times (35\times 10^{-4}) \times 10^{-4}}{2.6 \times 10^{-8}} \\\\L = 134.62 \ m

Therefore, the length of the wire is 134.62 m.

6 0
3 years ago
Interactions of current carrying wires
koban [17]
Physics stack exchange
7 0
3 years ago
A 50kg chandelier hangs from a ceiling suspended by a cable.
babunello [35]

Answer:

The tension force has a magnitude of 490 N, and acts vertically upward

Explanation:

The complete question is:

A 50kg chandelier hangs from a ceiling suspended by a cable. What is the Tension (magnitude and direction of the force) in the cable?

ANS:

Tension is the force applied axially by rope, chain, cable, rod, etc, as a reaction force. The direction of tension is always towards the support. Since, the support here, is ceiling.

Therefore, the direction of tension force will be <u>vertically upward</u><u>.</u>

Since the chandelier is hanging stationary, without any motion. Thus, there must not be any unbalanced force applied on it.

Hence, the tension force must be equal to the weight of chandelier.

Tension Force = Weight of Chandelier

T = W = mg

T = (50 kg)(9.8 m/s²)

<u>T =   490 N</u>

<u>Thus, the tension force has a magnitude of 490 N, and acts vertically upward</u>

6 0
3 years ago
Help! Don’t understand any of this!!
Kryger [21]
Yea me either. Good look
5 0
3 years ago
Which fact about the moon, as seen from the earth, is evidence that the amount of time the Moon takes to complete one rotation a
Cerrena [4.2K]
Choice ' c ' is the evidence.
6 0
3 years ago
Read 2 more answers
Other questions:
  • The term necrosis means
    10·1 answer
  • Which of the following was NOT one of the top 10 reported Stressors for Teens?
    8·2 answers
  • An astronaut on Earth notes that in her soft drink an ice cube floats with 9/10 of its volume submerged. If she were instead in
    5·2 answers
  • Which interactions are part of the greenhouse effect? Select three options.
    8·2 answers
  • Two asteroids are 100,000 m apart. One has a mass of 3.5 x 106 kg. If the
    14·2 answers
  • Astronomers observe two separate solar systems each consisting of a planet orbiting a sun. The two orbits are circular and have
    14·1 answer
  • A speed-time graph shows a car moving at 10 m/s for 10 s. The cars speed constantly decreases until it comes to a stop at 30 s.
    12·2 answers
  • In your lab group you combined salt and water. Then you compared what happens when an egg is placed in tap water versus salt wat
    7·2 answers
  • A thin, uniform stick of mass M and length L is at rest on a flat, frictionless surface to which one end of it is pinned. A smal
    10·1 answer
  • Find the specific heat of a substance that requires 8000 J of energy to heat up 400g by 20 C?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!