1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
2 years ago
8

A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof 1.15 s later. Ignor

e air resistance.
a) If the height of the building is 19.6 m, what must the initial speed of the first ball be if both are to hit the ground at the same time
b) what must the height of the building for both balls to reach the groung at the same time if the initial velocity of the first ball is now 8.6 m/s​
Physics
1 answer:
pogonyaev2 years ago
3 0

Answer:

a) v₀ = 9.2 m/s

b) y₀ = 7.9 m

Explanation:

The position of the balls is given by the equation:

y =- \frac{1}{2} gt^2 + v_0 t + y_0

where:

acceleration g = 9.8 m/s²

time t

initial velocity v₀

initial height y₀

a) lets divide (a) in two parts:

1.part: How long will it take the second ball to fall down?

v_0 = 0, y = 0\\0=- \frac{1}{2} gt^2 + y_0\\ t = \sqrt{\frac{2y_0}{g}}

2. part: At time t from part1 + 1.15s, the first ball should land on the ground.

y = 0, y_0 = 19.6, t = \sqrt{\frac{2y_0}{g}} + 1.15\\ 0 =- \frac{1}{2} gt^2 + v_0t + y_0

This leaves only one unknown: v₀

v_0 =\frac{1}{t}(\frac{1}{2} gt^2 - y_0)\\ v_0 = 9.2 \frac{m}{s}

b)again, lets divide in two parts

1.part: Where will ball1 be relative to ball2 in 1.15s:

t = 1.15s, v_0 = 8.6 m/s\\y= -\frac{1}{2} gt^2 + v_0t + y_0\\ \delta y = y - y_0 =v_0t -\frac{1}{2} gt^2

and how fast will it go:

v' = -gt + v_0

2.part: Now we can plug in to the equation for the position of the two balls. Let's start with the second ball first:

0 = -\frac{1}{2} gt^2 + y_0\\ y_0 = \frac{1}{2} gt^2

Now let's use this result in the equation for the first ball:

0 = - \frac{1}{2} gt^2 + v't + y_0 + \delta y = - \frac{1}{2} gt^2 + v't + \frac{1}{2} gt^2 + \delta y\\ 0 = v't + \delta y\\ t =- \frac{\delta y}{v'} \\ y_0 = \frac{1}{2} g(\frac{\delta y}{v'})^2\\ y_0 = 7.9m

You might be interested in
Four charges 7 × 10−9 C at (0 m, 0 m), −9 × 10−9 C at (3 m, 3 m), 7 × 10−9 C at (1 m, 3 m), and −8 × 10−9 C at (−3 m, 2 m), are
Ivanshal [37]

Answer:

Magnitude of the resulting force on the 7 nC charge at the origin:

Fn₁= 23.95*10⁻⁹ N

Explanation:

Look at the attached graphic:

Charges of positive signs exert repulsive forces on q₁ + and charges of negative signs exert attractive forces on q₁ +.

q₁ experiences three forces (F₂₁,F₃₁,F₄₁) and we calculate them with Coulomb's law:

F = (k*q₁*q)/(d)²

d_{12} = \sqrt{3^{2}+3^{2}  }  = \sqrt{18} m : distance from q₁ to q₂

(d₁₂)² = 18 m²

d_{13} =\sqrt{1^{2}+3^{2}  } = \sqrt{10} m  : distance from q₁ to q₃

(d₁₃)² = 10 m²

d_{14} =\sqrt{3^{2}+2^{2}  } = \sqrt{13} m  : distance from q₁ to q₄

(d₁₄)² = 13 m²

K=  8.98755 × 10⁹ N *m²/C²

q₁=  7*10⁻⁹C

k*q₁=8.98755*10⁹ *7*10⁻⁹= 62.9

F₂₁= (62.9)*(9* 10⁻⁹) /(18) = 31.45*10⁻⁹ C

F₃₁= (62.9)*(7* 10⁻⁹) /(10) = 44*10⁻⁹ C

F₄₁= (62.9)*(8* 10⁻⁹) /(13) = 38.7*10⁻⁹ C

x-y components of the net force on q₁ (Fn₁):

α= tan⁻¹(3/3)= 45°  ,  β= tan⁻¹(3/1)= 71.56° , θ= tan⁻¹(2/3)= 33.69°

Fn₁x = F₂₁x+ F₃₁x+F₄₁x

F₂₁x =+ F₂₁*cosα =+ (31.45*10⁻⁹)* (cos 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*cosβ = - ( 44*10⁻⁹)* (cos 71.56°) = -13.91 *10⁻⁹ N

F₄₁x= -F₄₁*cosθ = -(38.7*10⁻⁹)* (cos 33.69°) = -32.2*10⁻⁹ N

Fn₁x = (+22.24 - 13.91 - 32.2)*10⁻⁹ N

Fn₁x = -23.87 *10⁻⁹ N

Fn₁y = F₂₁y+ F₃₁y+F₄₁y

F₂₁x =+ F₂₁*sinα =+ (31.45*10⁻⁹)* (sin 45°) = +22.24 *10⁻⁹ N

F₃₁x= -F₃₁*sinβ = - ( 44*10⁻⁹)* (sin 71.56°) = -41.74 *10⁻⁹ N

F₄₁x= +F₄₁*sinθ = +(38.7*10⁻⁹)* (sin 33.69°) =+21.47*10⁻⁹ N

Fn₁y = (22.24 -41.74+21.47)*10⁻⁹ N  

Fn₁y = 1.97*10⁻⁹ N

Magnitude of the resulting force on the 7 nC charge at the origin (q₁):

F_{n1} =\sqrt{(Fn_{1x} )^{2}+(Fn_{1y} )^{2} }

F_{n1} =\sqrt{(23.87 )^{2}+(1.97 )^{2} }

Fn₁= 23.95*10⁻⁹ N

8 0
3 years ago
What is the particles instantaneous speed at t=16 sec
Ira Lisetskai [31]

It's  3.6 meters per second less than my speed was
at 4:19 PM last Tuesday.

Does that tell you anything ?
Why not ?

 
8 0
3 years ago
An airplane flies eastward and always accelerates at a constant rate. At one position along its path it has a velocity of 34.3 m
Tomtit [17]

Explanation:

We'll need two equations.

v² = v₀² + 2a(x - x₀)

where v is the final velocity, v₀ is the initial velocity, a is the acceleration, x is the final position, and x₀ is the initial position.

x = x₀ + ½ (v + v₀)t

where t is time.

Given:

v = 47.5 m/s

v₀ = 34.3 m/s

x - x₀ = 40100 m

Find: a and t

(47.5)² = (34.3)² + 2a(40100)

a = 0.0135 m/s²

40100 = ½ (47.5 + 34.3)t

t = 980 s

7 0
3 years ago
An alien spaceship traveling at 0.600 c toward the Earth launches a landing craft. The landing craft travels in the same directi
Arturiano [62]

The kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.

To find the answer, we have to know about the Lorentz transformation.

<h3>What is its kinetic energy as measured in the Earth reference frame?</h3>

It is given that, an alien spaceship traveling at 0.600 c toward the Earth, in the same direction the landing craft travels with a speed of 0.800 c relative to the mother ship. We have to find the kinetic energy as measured in the Earth reference frame, if the landing craft has a mass of 4.00 × 10⁵ kg.

                  V_x'=0.8c\\V=0.6c\\m=4*10^5kg

  • Let us consider the earth as S frame and space craft as S' frame, then the expression for KE will be,

                  KE=m_0c^2=\frac{mc^2}{1-(\frac{v_x^2}{c^2} )}

  • So, to V_x=(0.8+0.6)c-[\frac{0.6c*(0.8c)^2}{c^2}]=1.016find the KE, we have to find the value of speed of the approaching landing craft with respect to the earth frame.
  • We have an expression from Lorents transformation for relativistic law of addition of velocities as,

                      V_x'=\frac{V_x-V}{1-\frac{VV_x}{c^2} } \\thus,\\V_x=V_x'(1-\frac{VV_x}{c^2} )+V

  • Substituting values, we get,

          V_x=0.8c(1-\frac{0.8c*0.6c}{c^2} )+0.6c=(0.8c*0.52)+0.6c=1.016c

  • Thus, the KE will be,

              KE=\frac{4*10^5*(3*10^8)^2}{\sqrt{1-\frac{(1.016c)^2}{c^2} } } =\frac{1.2*10^{22}}{0.179}=6.704*10^{22}J

Thus, we can conclude that, the kinetic energy as measured in the Earth reference frame is 6.704*10^22 Joules.

Learn more about frame of reference here:

brainly.com/question/20897534

SPJ4

3 0
2 years ago
A truck covers 47.0 m in 8.60 s while smoothly slowing down to final speed of 2.30 m/s. (a) Find its original speed.
Kruka [31]

Explanation:

Given that,

Distance, s = 47 m

Time taken, t = 8.6 s

Final speed of the truck, v = 2.3 m/s

Let u is the initial speed of the truck and a is its acceleration such that :

a=\dfrac{v-u}{t}.............(1)

Now, the second equation of motion is :

s=ut+\dfrac{1}{2}at^2

Put the value of a in above equation as :

s=ut+\dfrac{1}{2}\times \dfrac{v-u}{t}\times t^2

s=\dfrac{t(u+v)}{2}

u=\dfrac{2s}{t}-v

u=\dfrac{2\times 47}{8.6}-2.3

u = 8.63 m/s

So, the original speed of the truck is 8.63 m/s. Hence, this is the required solution.

8 0
3 years ago
Other questions:
  • All animals need oxygen. We get oxygen from the air we breathe. How do fish get theirs?
    14·2 answers
  • What is circular motion​
    8·2 answers
  • Where are the magnetic field and force weakest in a magnet?
    11·1 answer
  • Mendeleev noticed that if he organized the elements by atomic weight certain patterns emerged. for instance, elements in the sam
    15·2 answers
  • An airplane flies at a speed of 250 mi/hr, 40 degrees south of east. A wind blows at a speed of 35 mi/hr 30 degrees west of sout
    12·1 answer
  • What did Rutherford’s model of the atom include that Thomson’s model did not have?
    15·2 answers
  • Accounts for about 70% of the mass-energy content of the universe. It acts in opposition to gravity.
    8·1 answer
  • A 2.0-kg pistol fires a 1.0-g bullet with a muzzle speed of 1000 m/s. The bullet then strikes a 10-kg wooden block resting on a
    13·1 answer
  • PLeAsE hElp <br> What is the kinetic energy of 14 Kg traveling at a velocity of 3m/s east
    13·1 answer
  • A baseball is launched horizontally from a height of 1.8 m. The baseball travels 0.5 m before hitting the ground.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!