<h3>
Answer:</h3>
- a_n = -3a_(n-1); a_1 = 2
- a_n = 2·(-3)^(n-1)
<h3>
Step-by-step explanation:</h3>
A) The problem statement tells you it is a geometric sequence, so you know each term is some multiple of the one before. The first terms of the sequence are given, so you know the first term. The common ratio (the multiplier of interest) is the ratio of the second term to the first (or any term to the one before), -6/2 = -3.
So, the recursive definition is ...
... a_1 = 2
... a_n = -3·a_(n-1)
B) The explicit formula is, in general, ...
... a_n = a_1 · r^(n -1)
where r is the common ratio and a_1 is the first term. Filling in the known values, this is ...
... a_n = 2·(-3)^(n-1)
Answer:
D. 5.5
Step-by-step explanation:
Answer:
The answer is D, $885.78
Step-by-step explanation:
If you use the calculator, then you can see that the money increases by 0.1% each year. For example, if you do 550*0.1 you get 55. add that to the 550 and you get 605, the second year's amount. If you keep doing this, when you get to year 6, you get 885.7805, or in money, $885.78! That's a lot of money!!! Hope this helps!
Answer:
B. x < -8 or x > 8
Step-by-step explanation:
You can use process of elimination to solve this problem by going through every solution and testing them out, but let's jump right to B.
Process:
You know that since the inequality states that x^2 has to be greater than 64, x has to be more than 8, or less than -8.
This is because 8^2 = 64, and -8^2 = 64, and the inequality requires the answer to be more than 64.
Looking at B., you can see that if x is < -8, the square of, for example, -9, would be 81. This is greater than 64, so this works!
Now, B. also has an alternative. The 'or' is a major clue to which is the correct answer, since the square root of any number can be positive or negative. (-8^2 = 8^2)
The 'or' states that x must be greater than 8. So, for example, if we take the square of 10, we get 100, and that is also greater than 64.
We've proven that this solution is accurate for both parts, so it is definitely the one we want!
Hope this helps!