1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Margarita [4]
3 years ago
9

isted below are amounts​ (in millions of​ dollars) collected from parking meters by a security service company and other compani

es during similar time periods. Do the limited data listed here show evidence of stealing by the security service​ company's employees? Security Service Company: 1.5 1.7 1.6 1.4 1.7 1.5 1.8 1.4 1.4 1.5 Other Companies: 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.5 1.7 1.8 Find the coefficient of variation for each of the two​ samples, then compare the variation. The coefficient of variation for the amount collected by the security service company is nothing​%. ​(Round to one decimal place as​ needed.)
Mathematics
1 answer:
AlladinOne [14]3 years ago
6 0

Answer:

Means:

1.55

1.73

Standard Deviation:

0.1434

0.1338

Coefficient of variation:

9.2

7.7

the limited data listed here shows evidence of stealing by the security service​ company's employees.

Step-by-step explanation:

Given data:

security Service Company          Other Companies    

               x₁                                                 x₂

               1.5                                              1.8

               1.7                                               1.9

               1.6                                               1.6

               1.4                                                1.7

               1.7                                                 1.8

               1.5                                                 1.9

               1.8                                                 1.6

               1.4                                                  1.5

               1.4                                                  1.7

               1.5                                                  1.8

      n₁ = 10                                                 n₂ = 10

To find:

coefficient of variation for each of the two​ samples

Solution:

The formula for calculating coefficient of variation of sample is:

Coefficient of Variation (CV) = (Standard Deviation / Mean) * 100%

Calculate Mean for Security Service Company data:

Mean =  (Σ x₁) / n₁

         = (1.5 + 1.7 + 1.6 + 1.4 + 1.7 + 1.5 + 1.8 + 1.4 + 1.4 + 1.5) / 10

         = 15.5 / 10

Mean = 1.55

Calculate Standard Deviation for Security Service Company data:

Standard Deviation = √∑(x₁ - Mean)²/n₁-1

                                = √∑(1.5-1.55)² + (1.7-1.55)² + (1.6-1.55)² + (1.4-1.55)² + (1.7-1.55)² + (1.5-1.55)² + (1.8-1.55)² + (1.4-1.55)² + (1.4-1.55)² + (1.5-1.55)² / 10-1

=√∑ (−0.05)² + (0.15)² + (0.05)² + (−0.15)² + (0.15)² + (−0.05)² + (0.25)² +  (−0.15)² +  (−0.15)² +  (−0.05)² / 10 - 1

= √∑0.0025 + 0.0225 + 0.0025 + 0.0225 + 0.0225 + 0.0025 + 0.0625 +        0.0225 + 0.0225 + 0.0025 / 9

= √0.185 / 9

= √0.020555555555556

= 0.14337208778404

= 0.143374

Standard Deviation = 0.143374

Coefficient of Variation for Security Service Company:

CV = (Standard Deviation / Mean) * 100%

     = (0.143374 /  1.55) * 100

     = 0.09249935 * 100

     = 9.249935

CV  = 9.2

CV  = 9.2%

Calculate Mean for Other Companies data:

Mean =  (Σ x₂) / n₂

          =  (1.8 + 1.9 + 1.6 + 1.7 + 1.8 + 1.9 + 1.6 + 1.5 + 1.7 + 1.8) / 10

          =   17.3 / 10

Mean  = 1.73

Calculate Standard Deviation for Other Companies data:

Standard Deviation = √∑(x₂-Mean)²/n₂-1

                                = √∑[(1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.7-1.73)² + (1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.5-1.73)² + (1.7-1.73)² + (1.8-1.73)²] / 10 - 1

                                = √∑ [(0.07)² + (0.17)² + (-0.13)² + (-0.03)² + (0.07)² + (0.17)² + (-0.13)² + (-0.23)² + (-0.03)² + (0.07)²] / 9

                                = √∑ (0.0049 + 0.0289 + 0.0169 + 0.0009 + 0.0049 + 0.0289 + 0.0169 + 0.0529 + 0.0009 + 0.0049) / 9

                                = √(0.161 / 9)

                                = √0.017888888888889                                

                                = 0.13374935098493

                                =  0.13375

Standard Deviation = 0.13375

Coefficient of Variation for Other Companies:

CV = (Standard Deviation / Mean) * 100%

     = (0.13375 / 1.73) * 100

     = 0.077312 * 100

     = 7.7312

CV = 7.7

CV = 7.7%

Yes, the limited data listed here shows evidence of stealing by the security service​ company's employees because there is a significant difference in the variation.

You might be interested in
Graph the result of the following transformation on f(x)​
pshichka [43]

The graph would be the normal parent function of f(x) but all points would be 6 units up.

There's an upward vertical shift of 6. To graph this, you need to graph the function f(x) and then add 6 units to all the y values.

7 0
2 years ago
(5•10^-2) x (2•10^3)
Andre45 [30]

Answer:

100

Step-by-step explanation:

5•10^-2= 5•1/100 an d that's equal to 1/20 if you divide it with (2•10^3)wich is equal too 2000

you will get 100 as a result

6 0
2 years ago
Read 2 more answers
Help please I’ll give brainliest
Luden [163]

I don't see any question there ... just a bunch of pretty rulers.

I'm going out on a limb here, and I'm gonna assume that the question is "Identify the number to which the arrow on each ruler is pointing.".

If that's the question, you're welcome.  If not, ignore everything I'm about to say.

Orphan ruler on page-1: 6 and 1/4

Rulers on page-2, starting at the top and working down:

6 and 3/8

1

3 and 5/8

2 and 1/2

7 and 3/4

4 and 7/8

5 and 1/8

9 and 1/2 .

If these answers are not helpful, remember:  I'm the one who had to invent the question, and for the question that I invented, these answers are all correct !

3 0
2 years ago
Will give brainliest answer
Cloud [144]

Answer:

F(t)=(H(t)=A(t))\\\\F(6.228)=25*2^6^.^2^2^8=1874.277

Step-by-step explanation:

6 0
2 years ago
A perfect square is the square of an integer. Of the integers from 2 through 99, how many have at least one perfect square facto
N76 [4]

Answer:

Six numbers have perfect square factors

Step-by-step explanation:

The numbers with perfect square factors are those numbers that have perfect squares as one of the numbers that can divide them.

They include:

4 = 2 * 2

16 = 4 * 4

36 = 6 * 6

49 = 7 * 7

64 = 8 * 8

81     = 9* 9

These numbers above have perfect square factors because they are formed from integers that multiply themselves.

8 0
2 years ago
Other questions:
  • A​ single, six-sided die is rolled. Find the probability of rolling an even number or a number less than 3.
    15·1 answer
  • Can someone please check my answer?
    13·1 answer
  • Halp please 10 points :)
    8·2 answers
  • The question got cut off. It is Francine works part time earning $10 and hour plus 3% commission on her sales"!
    9·1 answer
  • HELP ASAP !!!!!!!!!!!!!!!!!!!
    9·1 answer
  • Please help:( The graph below is the solution for which set of inequalities?
    8·1 answer
  • If f(x) varies directly with x2, and f(x) = 96 when x = 4, find the value of f(6).
    5·2 answers
  • -9h<-63 What is the answer?
    10·1 answer
  • Someone help me out with this my grade are bad
    12·1 answer
  • A random sample of 28 items is drawn from a population whose standard deviation is unknown. The sample mean is x=900 and the sam
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!