Answer:
17
but it can be 18 too
cuz the q doesn't tell us that the value of x has to be a prime no.
Step-by-step explanation:
2+3+5+7+11+13+17=58
Answer:
B
Step-by-step explanation:
parentheses exponents multiplication division addition subtraction
Answer:
14/25, 6/25, 1/5, 3/5
Step-by-step explanation:
Answer:
(−∞,+∞)
Step-by-step explanation:
The cotangent function can take up any values depending on the value of
x
, the independent variable.
And thus, the range
(
−
∞
,
+
∞
)
is justified.
The domain is all real numbers other than integral multiples of
π
where, the function is not defined.
Answer:
![\left[\begin{array}{ccc}-25&\dfrac{75}{2}&-\dfrac{25}{2}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26%5Cdfrac%7B75%7D%7B2%7D%26-%5Cdfrac%7B25%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
In the first equality
![5\times \left[\begin{array}{cc}-1&2\\4&8\end{array}\right] =\dfrac{2}{5}m\times \left[\begin{array}{cc}-1&2\\4&8\end{array}\right],](https://tex.z-dn.net/?f=5%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5C4%268%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cdfrac%7B2%7D%7B5%7Dm%5Ctimes%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5C4%268%5Cend%7Barray%7D%5Cright%5D%2C)
the matrices in both parts are the saem. The equality will be true if the same matrices are multiplied by the same numbers, so

For the second equality
![(H+[1\ 4\ -2])+[3\ 2\ -6]=[-2\ 3\ -1]+([1\ 4\ -2]+[3\ 2\ -6]),](https://tex.z-dn.net/?f=%28H%2B%5B1%5C%204%5C%20-2%5D%29%2B%5B3%5C%202%5C%20-6%5D%3D%5B-2%5C%203%5C%20-1%5D%2B%28%5B1%5C%204%5C%20-2%5D%2B%5B3%5C%202%5C%20-6%5D%29%2C)
if
, then this equality represents the assotiative property of matrix addition.
Hence,
![m\times H=\dfrac{25}{2}\times [-2\ 3\ -1]=\left[\begin{array}{ccc}-25&\dfrac{75}{2}&-\dfrac{25}{2}\end{array}\right]](https://tex.z-dn.net/?f=m%5Ctimes%20H%3D%5Cdfrac%7B25%7D%7B2%7D%5Ctimes%20%5B-2%5C%203%5C%20-1%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%26%5Cdfrac%7B75%7D%7B2%7D%26-%5Cdfrac%7B25%7D%7B2%7D%5Cend%7Barray%7D%5Cright%5D)