<span>The phospholipid bilayer is a thin polar membrane made of two layers of lipid molecules. ... Biological bilayers are usually composed of amphiphilicphospholipids that have a hydrophilic phosphate head and a hydrophobic tail consisting of two fatty acid chains.</span>
Answer:
1. Acetylcholine binds to receptors on the motor end plate
2. Ligand-gated channels open leading to depolarization
3. End plate potential triggers an action potential
4. Transverse tubules convey action potentials into the interior of the muscle fiber
5. Calcium is released from the sarcoplasmic reticulum
6. Calcium ions bind to troponin, which then moves tropomyosin
Explanation:
Acetylcholine (ACh) is a signaling molecule (neurotransmitter) that binds to receptors on muscle cells. This binding triggers the opening of ligand-gated sodium channels, thereby ions enter into muscle cells, which causes the depolarization of the sarcolemma and thus promotes the release of Ca2+ ions from the sarcoplasmic reticulum. The myoneural junction, also known as the motor endplate, is the site of synaptic contact between a motor axon and a skeletal muscle fiber. The endplate potential is the voltage that produces the depolarization of muscle fibers when ACh molecules bind to their receptors in the cell membrane. This depolarization spreads in the sarcolemma through transverse tubules (T tubules) and thus generates an action potential. Finally, this action potential induces the release of Ca2+ in the sarcoplasmic reticulum, which activates troponin protein and induces muscle contraction.
Answer:
C. 4 am on Sunday
Explanation:
It takes 6 hours 12.5 mins to go from high to low tides, high tides occurs every 12 hours and 25 mins apart.