9514 1404 393
Answer:
47 -6√10
Step-by-step explanation:
As you know, the area of a square is the square of the side length. It can be helpful here to make use of the form for the square of a binomial.
(a -b)² = a² - 2ab + b²
(√2 -3√5)² = (√2)² - 2(√2)(3√5) + (3√5)²
= 2 - 6√10 + 3²(5)
= 47 -6√10
__
<em>Check</em>
√2-3√5 ≈ -5.29399 . . . . . . . . note that a negative value for side length makes no sense, so this isn't about geometry, it's about binomials and radicals
(√2-3√5)² ≈ 28.02633
47 -6√10 ≈ 28.02633
<h3>
Answer: 9.4 feet</h3>
Work Shown:
sin(angle) = opposite/hypotenuse
sin(22) = x/25
x = 25*sin(22)
x = 9.3651648353978
x = 9.4
Your calculator needs to be in degree mode. One way to check is to compute sin(30) and you should get 0.5 or 1/2.
Answer:
I think Teresa needs 6 tablespoons of butter..
Step-by-step explanation:
Hope this right...but if it's not,im so sorry
Answer:
30 weeks
Step-by-step explanation:
105-90
=15 kg
15kg= 15000g
15000g/500g
=30 weeks
plz mark me as brainliest.
Answer:
Step-by-step explanation:
Given: ∠N≅∠S, line l bisects TR at Q.
To prove: ΔNQT≅ΔSQR
Proof:
From ΔNQT and ΔSQR
It is given that:
∠N≅∠S (Given)
∠NQT≅∠SQR(Vertical opposite angles)
and TQ≅QR ( Definition of segment bisector)
Thus, by AAS rule,
ΔNQT≅ΔSQR
Hence proved.
Statement Reason
1. ∠N≅∠S given
2. ∠NQT≅∠SQR Vertical angles are congruent
3. line l bisects TR at Q. given
4. TQ≅QR Definition of segment bisector
5. ΔNQT≅ΔSQR AAS theorem
Hence proved.
Thus, option D is correct.