Answer:
11x + 10y - 2w
Step-by-step explanation:
Hello!
To solve for the perimeter, we add up the like terms.
What are like terms?
Like terms are terms with the same variable and degree. 4x and 5y are NOT like terms because the variable is not the same. However, 4x and 3x are like terms, as adding them gives us 7x.
4x and 4x² are not like terms, because the degree of 4x is 1 (degree means the largest exponent), but the degree of 4x² is 2.
Solve for Perimeter:
Combine the like terms by adding them up.
- Perimeter = (8x - 4w) + (3y + 2w) + (3x + 7y)
- P = 8x - 4w + 3y + 2w + 3x + 7y
- P = 8x + 3x + 3y + 7y - 4w + 2w
- P = 11x + 10y - 2w
The perimeter is 11x + 10y - 2w
measure of angle CED is 80
X = 1 hr lessons and y = 1/2 hr lessons
x + y = 35......y = 35 - x
40x + 25y = 1115
40x + 25(35 - x) = 1115
40x + 875 - 25x = 1115
40x - 25x = 1115 - 875
15x = 240
x = 240/15
x = 16 <=== there are 16 one-hr lessons
and 19 half-hr lessons
A^2 +a-6. You use the method of foiling where you multiply the first two terms, the the outside terms, the inside terms, then the last terms. You would do a•a, then a•-2 the a•3 then 3•-2. You would get a^2 -2a +3a -6. Then combine like terms to get your answer.