Answer:
(1, 5)
Step-by-step explanation:
The solution to the system of equations is the point of intersection of the two lines. From inspection of the graph, the point of intersection is at (1, 5).
<u>Proof</u>
The solution to a system of equations is the point at which the two lines meet.
⇒ g(x) = f(x)
⇒ 3x + 2 = |x - 4| + 2
⇒ 3x = |x - 4|
⇒ 3x = x - 4 and 3x = -(x - 4)
⇒ 3x = x - 4
⇒ 2x = -4
⇒ x = -2
Inputting x = -2 into the 2 equations:
⇒ g(-2) = 3 · -2 + 2 = -4
⇒ f(-2) = |-2 - 4| + 2 = 8
Therefore, as the y-values are different, x = -2 is NOT a solution
⇒ 3x = -(x - 4)
⇒ 3x = 4 - x
⇒ 4x = 4
⇒ x = 1
Inputting x = 1 into the 2 equations:
⇒ g(1) = 3 · 1 + 2 = 5
⇒ f(1) = |1 - 4| + 2 = 5
Therefore, as the y-values are the same, x = 1 IS a solution
and the solution is (1, 5)
Answer:
<em>Probability ≈ 0.1071</em>
Step-by-step explanation:
Consider steps below;



<em>Solution; Probability ≈ 0.1071</em>
Answer: is actually 15×4 is 60 and 60 is greater than 29
Step-by-step explanation:
<span>a) Differentiate both sides of lnq − 3lnp + 0.003p=7 with respect to p, keeping in mind that q is a function of p and so using the Chain Rule to differentiate any functions of q:
(1/q)(dq/dp) − 3/p + 0.003 = 0
dq/dp = (3/p − 0.003)q.
So E(p) = dq/dp (p/q) = (3/p − 0.003)(q)(p/q) = (3/p − 0.003)p = 3 − 0.003p.
b) The revenue is pq.
Note that (d/dp) of pq = q + p dq/dp = q[1 + dq/dp (p/q)] = q(1 + E(p)), which is zero when E(p) = −1. Therefore, to maximize revenue, set E(p) = −1:
3 − 0.003p = −1
0.003p = 4
p = 4/0.003 = 4000/3 = 1333.33</span>
A theater has 500 seats. Three fourths of the seats are filled how many seats are filled
375 seats are filled