Answer:
the teacher means that if she had done more research she wouldve had a better result
Explanation:
Answer:
Explanation:
Hi there,
To get started, let's first observe our rate law:
we typically use square brackets [x] for chemistry kinetics, because they specifically tell us we are dealing with <em>concentrations</em>.
This rate law is in fourth-order, because the concentrations powers add up to 4. We are not told the unit of time for this prompt (unless you know it), so I just assumed the time unit to be "time."
To calculate the reaction rate, we simply plug in the concentration of A and B into the rate law. k is the <em>rate constant</em> and stays the same for an individual reaction.
![R=(0.1 \ M^{-3}*time^{-1})[1 \ M]^2[2 \ M]^2=0.4 \ M/time](https://tex.z-dn.net/?f=R%3D%280.1%20%5C%20M%5E%7B-3%7D%2Atime%5E%7B-1%7D%29%5B1%20%5C%20M%5D%5E2%5B2%20%5C%20M%5D%5E2%3D0.4%20%5C%20M%2Ftime)
Thus, the rate of reaction with those concentrations is 0.4 M/time.
Notice, the rate constant does in fact have units of it own. The unit for k can be calculated by knowing that:
- Rate (R) must end up with units of concentration (M) per time.
- The concentrations raised to a power can be used to help solve for the units of k.
If you liked this solution, leave it as Brainliest Answer and give a Rating!
The Battle of Gettysburg proved to be the turning point of the war.
TRUE
Answer:
1: The speculation that continents might have 'drifted' was first put forward by Abraham Ortelius in 1596. The concept was independently and more fully developed by Alfred Wegener in 1912, but his hypothesis was rejected by many for lack of any motive mechanism. 2: The most obvious evidence for continental drift is that the continents appear to fit together like pieces of a puzzle. But scientists were skeptical , and Wegener needed additional evidence to support his hypothesis. Glaciers covered large areas that are now parts of these continents.
Answer:
to explore the Kupier Belt
Explanation:
just finished the test