Answer:
A is a eukaryotic cell while B is a prokaryotic cell
Explanation:
The researcher can conclude that <u>cell A is eukaryotic while cell B is prokaryotic.</u>
In eukaryotic cells, the <u>DNA is located majorly in the nucleus and the replication of the DNA happens in the nucleus</u>. Hence, it is only logical to find segments of new DNA in the nucleus of cell A during replication.
<u>Prokaryotic cells, however, lack a nucleus</u>. Their DNAs lie freely within the cytoplasm. This thus means that replication can only happen in the cytoplasm. Hence, it follows logically to find a new DNA segment in the cytoplasm of cell B.
I believe the blank space is preserved :)
You are missing part of the question but color blindness it less likely to be found in female because it is a sex trait that lies on the x gene while also being submissive trait sry I forgot the word. Guys only have one x gene meaning they are much more likely to get it
Cellular respiration is a metabolic pathway that breaks down glucose and produces ATP. The stages of cellular respiration include glycolysis, pyruvate oxidation, the citric acid or Krebs cycle, and oxidative phosphorylation.
During cellular respiration, a glucose molecule is gradually broken down into carbon dioxide and water. Along the way, some ATP is produced directly in the reactions that transform glucose. Much more ATP, however, is produced later in a process called oxidative phosphorylation. Oxidative phosphorylation is powered by the movement of electrons through the electron transport chain, a series of proteins embedded in the inner membrane of the mitochondrion.
These electrons come originally from glucose and are shuttled to the electron transport chain when they gain electrons.
As electrons move down the chain, energy is released and used to pump protons out of the matrix, forming a gradient. Protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water. Glycolysis can take place without oxygen in a process called fermentation. The other three stages of cellular respiration—pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation—require oxygen in order to occur. Only oxidative phosphorylation uses oxygen directly, but the other two stages can't run without oxidative phosphorylation.). As electrons move down the chain, energy is released and used to pump protons out of the matrix, forming a gradient. Protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water.
Glycolysis can take place without oxygen in a process called fermentation. The other three stages of cellular respiration—pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation—require oxygen in order to occur. Only oxidative phosphorylation uses oxygen directly, but the other two stages can't run without oxidative phosphorylation.
Explanation:
Amount of water the water park uses per day