Answer:
Step-by-step explanation:
The question is incomplete. Here is the complete question.
The upper-left coordinates on a rectangle are (−5,6) and the upper-right coordinates are (−2,6). The rectangle has a perimeter of 16units. Draw the rectangle on the coordinate plane below.
If the coordinates of the top of the triangle (breadth) is (−5,6) and (−2,6), we can calculate the breadth of the rectangle by taking the difference between the two points using the formula:
D = √(y₂-y₁)²+(x₂-x₁)²
Given x₁ = -5, y₁= 6, x₂ = -2 and y₂ = 6
D = √(6-6)²+(-2-(-5))²
D = √0²+3²
D = √9
D = 3 units
Breadth = 3 units
Given the Perimeter to be 16 units and the formula for calculating the perimeter of rectangle t be P = 2(L+B), we can get the length of the rectangle.
16 = 2(3+L)
16 = 6+2L
16-6 = 2L
2L = 10
L = 10/2
L = 5 units.
<em>Hence the length of the rectangle is 5 units and the breadth is 3 units. Find the diagram in the attachment.</em>
I think B is the only polynomial because A and C both have roots that aren't supposed to be in polynomial expressions and you can't divide (D)
Answer:
Range tells you how high and low the graph of this parabola goes in the “y” (vertical) directions.
1. We can see that the parabola peaks on the y-axis at y = 4. That’s as HIGH as it goes.
2. We also see that both sides of the parabola descend to the level of y = -7. That’s as LOW as it is shown to go.
So putting these together, we say the Range is given by:
-7 <= y <= 3
AMBIGUITY WARNING:
Because the two branches of the parabola go fall right down to the edge of the picture boundary, it’s UNCLEAR whether the parabola truly stops at y = -7 or CONTINUES on (to negative infinity).
In THAT case, the RANGE simplifies to:
Y <= 4
Done.
Step-by-step explanation:
Answer:
742,380952381 <em>OR</em> 31180/42
Step-by-step explanation:
16/42=0,380952381
742+0,380952381=742,380952381
<em>or</em>
(742*42)/42 + 16/42 = (31164+16) /42 = 31180/42