1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
10

What is the length of a diagonal of a square with a side length of 8?

Mathematics
2 answers:
Arisa [49]3 years ago
7 0

Answer:

 your answer is B

Step-by-step explanation: let me know when you get it right

in please just say thanks

Irina-Kira [14]3 years ago
3 0
D = 8 square root of 2
Is the correct answer
You might be interested in
Evaluate 18 -8(14 + 4) + 42.
Alina [70]

Answer:

-84

Step-by-step explanation:

4 0
3 years ago
Question Find the slope of the line. (-1,3) (3,3)
navik [9.2K]

Here’s the answer is m=0
4 0
3 years ago
Which of the following is not one of the 8th roots of unity?
Anika [276]

Answer:

1+i

Step-by-step explanation:

To find the 8th roots of unity, you have to find the trigonometric form of unity.

1.  Since z=1=1+0\cdot i, then

Rez=1,\\ \\Im z=0

and

|z|=\sqrt{1^2+0^2}=1,\\ \\\\\cos\varphi =\dfrac{Rez}{|z|}=\dfrac{1}{1}=1,\\ \\\sin\varphi =\dfrac{Imz}{|z|}=\dfrac{0}{1}=0.

This gives you \varphi=0.

Thus,

z=1\cdot(\cos 0+i\sin 0).

2. The 8th roots can be calculated using following formula:

\sqrt[8]{z}=\{\sqrt[8]{|z|} (\cos\dfrac{\varphi+2\pi k}{8}+i\sin \dfrac{\varphi+2\pi k}{8}), k=0,\ 1,\dots,7\}.

Now

at k=0,  z_0=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 0}{8}+i\sin \dfrac{0+2\pi \cdot 0}{8})=1\cdot (1+0\cdot i)=1;

at k=1,  z_1=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 1}{8}+i\sin \dfrac{0+2\pi \cdot 1}{8})=1\cdot (\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};

at k=2,  z_2=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 2}{8}+i\sin \dfrac{0+2\pi \cdot 2}{8})=1\cdot (0+1\cdot i)=i;

at k=3,  z_3=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 3}{8}+i\sin \dfrac{0+2\pi \cdot 3}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2};

at k=4,  z_4=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 4}{8}+i\sin \dfrac{0+2\pi \cdot 4}{8})=1\cdot (-1+0\cdot i)=-1;

at k=5,  z_5=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 5}{8}+i\sin \dfrac{0+2\pi \cdot 5}{8})=1\cdot (-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=-\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};

at k=6,  z_6=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 6}{8}+i\sin \dfrac{0+2\pi \cdot 6}{8})=1\cdot (0-1\cdot i)=-i;

at k=7,  z_7=\sqrt[8]{1} (\cos\dfrac{0+2\pi \cdot 7}{8}+i\sin \dfrac{0+2\pi \cdot 7}{8})=1\cdot (\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2})=\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2};

The 8th roots are

\{1,\ \dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2},\ i, -\dfrac{\sqrt{2}}{2}+i\dfrac{\sqrt{2}}{2},\ -1, -\dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2},\ -i,\ \dfrac{\sqrt{2}}{2}-i\dfrac{\sqrt{2}}{2}\}.

Option C is icncorrect.

5 0
3 years ago
Triangle ABC contains the point A(5,2). Find the coordinates of A' after a reflection over the x-axis
Sholpan [36]

Answer:

Step-by-step explanation:

Should be 5,-2 OR NOT

4 0
4 years ago
What is the length of the ladder? it’s 6 ft. from the house at the bottom and touches the wall 14 ft. up at the top.
Phoenix [80]

Answer:

approx. 15.23

Step-by-step explanation:

6^2+14^2=c^2

7 0
3 years ago
Other questions:
  • 18, 19, and 20 please!
    13·1 answer
  • My first number is -2, my fifth number is 26<br>What is my third number?<br>​
    6·2 answers
  • Given the table below, what linear equation matches the data?
    6·1 answer
  • Please show step by step
    7·1 answer
  • Solve.
    8·1 answer
  • What is the area, in square centimeters, of a 8cm circle
    12·1 answer
  • Tiliat is the ratio of rupees 1 and 50 paisa​
    9·1 answer
  • Label the parts of the expression for me please ️​
    7·2 answers
  • Gud night <br>people....<br><br>​
    14·2 answers
  • A rectangular shaped park contains two gardens of multi-colored roses. Sidewalks enclose the whole park and each of the gardens.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!