This graph is composed of four straight line segments. You'll need to determine the slope, y-intercept and domain for each of them. Look at the first segment, the one on the extreme left. Verify yourself that the slope of this line segment is 1 and that the y-intercept would be 0 if you were to extend this segment all the way to the y-axis. Thus, the rule (formula, equation) for this line segment would be f(x)=1x+0, or just f(x)=x, for (-3,-1). Use a similar approach to write rules for the remaining three line segments.
Present your answer like this:
x, (-3,-1)
f(x) = -1, (-1,0)
one more here
one more here
Answer:
Step-by-step explanation:
To make the problem easier to solve, we will set it up as the equation of the length of time of each class times the number of classes equals the total amount of minutes. However, since we don't know the number of classes, we'll symbolize our two unknowns with two variables.
75x + 45y = 705
(75x + 45y)/15 = 705/15
5x + 3y = 47
y = (47-5x)/3
It looks like we can't simplify the equation any more, so now it is a matter of trial and error. The minimum number of Saturday classes means the maximum number of weekday classes. We first will test for the maximum by assuming there are no Saturday classes, then will work our way up until x is an integer.
If x = 0
(47-5(0))/3 = 47/3 = 15.6666
If x = 1
(47-5(1))/3 = 42/3 = 14
This works. Therefore, the maximum number of weekday classes is 14, or choice b.
Answer:
0.786 L
Step-by-step explanation:
1000 ml to 1 L
(786 ml) / (1000 ml) = 0.786 L
Martha then has 11 apples because 20-9=11
Gggggggggffffffffgg. It equals 1