Answer:
The genotype of the F1 was wy+/w+y.
Explanation:
One of the given options has a typo: the red eye-brown body offspring count should be 56 instead of 561.
<u>We have two genes with two alleles each:</u>
Red eyes (w+) is dominant over white eyes (w).
Brown body (y+) is dominant over yellow body (y).
The phenotypes of the F2 tesulting from a test cross (F1 x wy/wy) are:
- wy+/ey (white-eye, brown body): 670
- w+y/wy (red-eye, yellow body): 650
- wy/wy (white-eye, yellow body): 38
- w+y+/wy (red-eye, brown body 56
If the genes w and y are linked, two phenotypes in the F2 will be much more abundant than the other two. Recombination during meiosis is a rare event, so the most abundant phenotypes are the parentals (the ones present in the F1 parent).
Every individual in the offpsring has a <em>wy</em> chromosome, as this was the gamete inherited from the test cross individual.
In this case, the most abundant gametes are wy+ and w+y, so the genotype of the F1 was wy+/w+y.
Notice how when recombination occurs in the F1 parent, the recombinant gametes appear: wy and w+y+, which are the less abundant in the F2 progeny.
A chemical reaction is a process in which one or more substances are changed into new substances.
An example of a chemical reaction is when metal rusts.
<span>A special interest group work hard to get a rider attached to a bill b</span>ecause many special-interest groups try to get something unrelated into a bill and to benefit the group.
1) A 2) B
Explanation:
Enzymes are catalyst, meaning that they could be use in several reaction and they speed up any chemical reaction rate. So knowing this, when the animal have more enzymes it will react more quickly with the food, making it digest the food more quickly.
Hope the help, cheers
Mitochondria and chloroplast have similar DNA, which is not evidence for the endosymbiotic origins of mitochondria and chloroplasts.
According to the endosymbiotic theory, a chloroplast and a mitochondria were the independent prokaryotes. Both can be ingested by a large prokaryote and resist digestion. As a result, they continued as endosymbionts and eventually lost some of their autonomic properties. They divide by binary fission, have their own genetic material, possess 70s ribosomes, and Both include their own transcriptional and translational machinery.
Therefore, considering endosymbiotic origin theory, Both Mitochondria and chloroplast have similar DNA is not a piece of evidence.
Learn more about endosymbiotic origins theory here
brainly.com/question/771962
#SPJ4