Answer:NADH donates it electron to complex I a higher energy level than other complexes while FADH donates it electron to complex II a lower energy complex.
Explanation:
Both NADH and FADH are shuttle of high energy electrons originally extracted from food into the inner mitochondrial membrane.
NADH donate it electron to a flavoprotein consisting of FMN prosthetic group and an iron-sulphur protein in ETC complex-I. Two electrons and one hydrogen ion are are transferred from NADH to the flavin prosthetic group of the enzyme.
While the electrons from FADH2 enters the ETC (electron transport chain) at the level of co-enzyme Q (complex II). This step does not librate enough energy to act as a proton pump.
So NADH produces 2.5 ATP during the ETC and oxidative phosphorylation because it donates its electron to Complex I, which pump more electrons across the membrane than other complexes.
If it were a terroristic poisoning I’d say FEMA but if it were just pesticides then FDA
Answer: Classification\
Explanation:
Classification is the arrangement of organisms into orderly groups based on their similarities. In order to classify an organism, a biologist must use a system that groups organisms according to shared characteristics and their relationships between one another.
Answer:
Marigold --> Pill Bug --> Fly
Explanation:
A) DNA fulfils all three conditions:
<span>(1) copy itself precisely - in the process of replication, DNA copies itself and two molecules of DNA are formed. This process is very precise thanks to the great number of proteins involved in these process that prevents error occurring and proteins that can fix the error if it occurs.
(2) be stable but able to be changed - DNA is very stable molecule otherwise, it cannot be a genetic material. However, its chains can separate in a short length so the translational machinery can attach to it and the process of transcription can occur. Also, in crossing over, during meiosis, </span>the exchange of genetic material occurs and chromosomes change a bit.<span>
(3) be complex enough to determine the organism’s phenotype - it contains a number of genes responsible for different traits. All of this results in the </span>organism’s phenotype.
B) DNA copies itself. <span>Meselson and Stahl conducted the experiments on DNA replication in which they used </span>E. coli<span> bacteria as a model system. After they labelled all bacteria's DNA with heavy 15N by using medium with heavy 15N, they switched bacteria to medium with light 14N. After several generations, all bacteria's DNA was labelled with light 14N. This experiment evidenced that the self-replication of DNA is semi-conservative process.</span>