Answer:
1, 2, 3, and 6 are the answers.
Explanation:
sorry for the late response
Answer: vf= 51 m/s and d= 112 m
Explanation: solution attached
Explanation:
Only few supernova are observed in our galaxy -
Type II supernovae ( i.e. the explosions of the massive stars ) occurred in the Milky Way, and they might be hidden by the intervening dust if they are located in the more distant parts of our Galaxy .
Type Ia supernovae , which need a white dwarf star in the binary star system , are brighter than the type II supernovae , but some of them could also happen in the older parts of Galaxy which are hidden due to the buildup of the dust and gas .
Answer:
p = 1.16 10⁻¹⁴ C m and ΔU = 2.7 10 -11 J
Explanation:
The dipole moment of a dipole is the product of charges by distance
p = 2 a q
With 2a the distance between the charges and the magnitude of the charges
p = 1.7 10⁻⁹ 6.8 10⁻⁶
p = 1.16 10⁻¹⁴ C m
The potential energie dipole is described by the expression
U = - p E cos θ
Where θ is the angle between the dipole and the electric field, the zero value of the potential energy is located for when the dipole is perpendicular to the electric field line
Orientation parallel to the field
θ = 0º
U = 1.16 10⁻¹⁴ 1160 cos 0
U1 = 1.35 10⁻¹¹ J
Antiparallel orientation
θ = 180º
cos 180 = -1
U2 = -1.35 10⁻¹¹ J
The difference in energy between these two configurations is the subtraction of the energies
ΔU = | U1 -U2 |
ΔU = 1.35 10-11 - (-1.35 10-11)
ΔU = 2.7 10 -11 J
Answer: motion parallax
Explanation:
Motion parallax refers to a form of depth perception whereby objects that are closer to an individual appears to move at a faster speed than the objects that are far.
Therefore, Kate is riding on a train and notices that the wildflowers by the side of the tracks seem to be moving by much faster than the mountains in the distance is an example of motion parallax.