The full question is:
On a keyboard, you strike middle C, whose frequency is 256 Hz. What is the period of one vibration of this tone?
The period of a vibration is the time it takes for the particle to make one full oscillation. Frequency is by definition number of full oscillations per unit of time.
When the frequency is expressed in Hz that unit of time is one second.
So there is the following relation between frequency and period:

When we plug in the numbers we get:
Answer:
location of battery in this diagram is at A and location of switch is at B.
Answer:
Gases are easily compressed. We can see evidence of this in Table 1 in Thermal Expansion of Solids and Liquids, where you will note that gases have the largest coefficients of volume expansion. The large coefficients mean that gases expand and contract very rapidly with temperature changes. In addition, you will note that most gases expand at the same rate, or have the same β. This raises the question as to why gases should all act in nearly the same way, when liquids and solids have widely varying expansion rates.
Explanation:
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Hello! :)
The focal length of the lens tells you how far away from the lens a focused image is created, if light rays approaching the lens are parallel. A lens with more “bending power” has a shorter focal length, because it alters the path of the light rays more effectively than a weaker lens. Most of the time, you can treat a lens as being thin and ignore any effects from the thickness, because the thickness of the lens is much less than the focal length. But for thicker lenses, how thick they are does make a difference, and in general, results in a shorter focal length.
Hope I helped and didn’t answer too late!
Good luck and stay COOL!
~ Destiny ^_^