Answer: The most affected would be organs that have QUICKLY dividing cells (like the intestine and hair follicles).
Explanation:
Cancer cells are cells that divides uncontrollably giving rise to a mass of tissue called tumour. They grow faster than a normal cell in an uncoordinated manner, and continues to grow after the initial stimulus has ceased.
Paclitaxel is a drug that is approved for the treatment of cancer affecting different parts of the body. It's a microtubule-stabilizing drug whose mechanism of action is to induce mitotic arrest in the cancer cells.
Paclitaxel in its cause of action not only affect cancer cells but normal cells as well. To justify this statement, as stated earlier, the mechanism of action of paclitaxel is to induce mitotic arrest. Therefore the cells of organs where rapid mitosis occurs would be most affected. Skin cells, hair follicles and the cells lining our intestines (epithelial cells) all have high rates of mitosis as these tissues constantly need to be replaced.
Answer:
i love you:)
Explanation:
Solar energy has come a long way in a decade. Back in 2010, the global market was small and highly dependent on subsidy regimes in countries such as Germany and Italy. This year there will be more than 115 gigawatts (GW) of solar installed across the world, which is more than all other generation technologies put together. It is also increasingly low cost, especially in sunnier regions where it has already become the lowest-cost form of new electricity generation.
In the coming years, technology improvements will ensure that solar becomes even cheaper. It could well be that by 2030, solar will have become the most important source of energy for electricity production in a large part of the world. This will also have a positive impact on the environment and climate change.
Going forward the solar industry has very clear cost-reduction roadmaps, which should see solar costs halving by 2030. There is already a move in place towards higher-efficiency modules, which can generate 1.5 times more power than existing, similarly sized modules today using a technology called tandem silicon cells. These are going to have a large impact going forward.
In addition, there are production innovations coming down the pipeline that will reduce the amounts of costly materials such as silver and silicon used in the manufacture of solar cells, as well as innovations such as bifacial modules which allow panels to capture solar energy from both sides. The other important innovation is around how best to integrate solar into our homes, businesses and power systems. This means better power electronics and a greater use of low-cost digital technologies.
What this means is that solar will reach, in many parts of the world, a levelized cost of energy that will make it unbeatable compared to fossil fuels. Given that solar is so easy and quick to install, not to mention flexible - after all, solar can be used to power something as small as a watch or as large as a city - it should mean that solar installations continue to grow over the coming decade. This could also be very good for the climate. Now that is something bright to write about.
Answer:
,Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
Heterotrophs depend on photosynthesis as a source of oxygen
Mitochondria are tiny organelles inside cells that are involved in releasing energy from food. This process is known as cellular respiration. It is for this reason that mitochondria are often referred to as the powerhouses of the cell.