Answer:
A) They have low-maintenance and are easy to keep track of for mutations.
B) The deduction can be "Single Gene Mutation"
Explanation:
After examining the example given in the question on Neurospora crassa and the details about how they reproduce, the following points can be made regarding the questions;
A) It is stated that they form a colony in time and that they are asexual spores and the first reason to choose them would be because they contain somatic cells (which refer to the cells other than reproductive cells) and non-motile gonidia which can multiply by dividing themselves and these properties make the colony's maintenance easy. And since they multiply by division, it is easier to keep track of the occuring mutations.
B) Given the information in the question that the mating is between an albino strain and a wild type, and then between two albino strains which have the same genotype. The results indicate that the strains have gone through single gene mutation during the process.
I hope this answer helps.
The method that uses bacteria to copy DNA is : Recombinant DNA Technology.
To copy the DNA, recombinant DNA method use bacteria such as E. Coli whose plasmids has been combined with various gene to produce the substance that is wanted.
hope this helps
Answer and Explanation:
Normally happening synapses animate receptors and are called agonists. Truth be told, an entire range of potential outcomes exists, some of the time called the agonist range. A few medications do invigorate receptors similarly as do the characteristic synapses and are in this manner agonists. Different medications really obstruct the activities of a characteristic synapse at its receptor and are called rivals. Genuine enemies just apply their activities within the sight of agonist; they have no inherent action of their own without agonist. Still different medications do something contrary to what agonists do and are called opposite agonists. Hence, drugs acting at a receptor exist in a range from full agonist to enemy to opposite agonist. The agonist range for G protein-connected receptors is the extremely same for ligand-gated particle channels Thus,full agonists change the adaptation of the receptor to open the particle channel to the maximal sums and frequencies permitted by that coupling site.
This at that point triggers the maximal measure of down-stream signal transduction that can be intervened by this coupling site. The particle channel can open to a significantly more prominent degree and considerably more much of the time than with a full agonist alone, yet this requires the assistance of a subsequent receptor site, that of positive allosteric modulator. Particles channel connected receptors act along an agonist range and medications can deliver conformational changes in these receptors to make any state from full agonist, to halfway agonist, to quiet foe, to reverse agonist. These states happen overwhelmingly with intense organization of specialists which work over the agonist range. These reaches from the maximal opening of the particle channel from conformational changes brought about by full agonist to the maximal shutting of the particle channel brought about by a backwards agonist. Such changes in adaptation brought about by intense activity of operators over this range are liable to change after some time, since these receptors have the ability to adjust, especially when there is interminable or unnecessary introduction to them.
E. That you don't wanna touch it with your bear hands and that you need to suspend your pure speculation till you have the results from the lab
Answer:
Even though a motion picture actually consists of a series of still frames, we perceive them conveying continuous movement. This is an example of stroboscopic effect.
Explanation:
The stroboscopic effect is caused by aliasing which leads to different signals to become identical when sampled.