Answer:
12,608 kPa
Explanation:
First we need to convert the density to standard units, that is kg/m^3
0.85 g/cm^3 = 0.85 ×
= 0.85 × 1000 = 850 kg/m^3
Pressure of oil = pressure at surface + rho × g × h
= 101,000 + (850×9.81×1500)
= 12,608 kPa
The units in the part 'rho.g.h' will cancel out against each other and you will be left with the unit Pascals - which is the unit for pressure.
Hope that answers the question, have a great day!
Answer:
Voltage is the measure of specific potential energy (potential energy per unit charge) between two locations. ... When a voltage source is connected to a circuit, the voltage will cause a uniform flow of charge carriers through that circuit called a current.
Answer:
Mass of the oil drop, 
Explanation:
Potential difference between the plates, V = 400 V
Separation between plates, d = 1.3 cm = 0.013 m
If the charge carried by the oil drop is that of six electrons, we need to find the mass of the oil drop. It can be calculated by equation electric force and the gravitational force as :


, e is the charge on electron
E is the electric field, 


So, the mass of the oil drop is
. Hence, this is the required solution.
They are both the same because of newton’s third law
Answer:
The value of the power is 
Explanation:
From the question we are told that
The power rating 
The frequency is 
The frequency at which the sound intensity decreases 
The decrease in intensity is by 
Generally the initial intensity of the speaker is mathematically represented as
![\beta_1 = 10 log_{10} [\frac{P_b}{P_a} ]](https://tex.z-dn.net/?f=%5Cbeta_1%20%3D%20%2010%20log_%7B10%7D%20%5B%5Cfrac%7BP_b%7D%7BP_a%7D%20%5D)
Generally the intensity of the speaker after it has been decreased is
![\beta_2 = 10 log_{10} [\frac{P_c}{P_a} ]](https://tex.z-dn.net/?f=%5Cbeta_2%20%3D%20%2010%20log_%7B10%7D%20%5B%5Cfrac%7BP_c%7D%7BP_a%7D%20%5D)
So
![\beta_1-\beta_2 = 10 log_{10} [\frac{P_c}{P_a} ]- 10 log_{10} [\frac{P_b}{P_a} ]](https://tex.z-dn.net/?f=%5Cbeta_1-%5Cbeta_2%20%3D%20%2010%20log_%7B10%7D%20%5B%5Cfrac%7BP_c%7D%7BP_a%7D%20%5D-%2010%20log_%7B10%7D%20%5B%5Cfrac%7BP_b%7D%7BP_a%7D%20%5D)
=> ![\beta = 10 log_{10} [\frac{P_c}{P_a} ]- 10 log_{10} [\frac{P_b}{P_a} ]= 1.3](https://tex.z-dn.net/?f=%5Cbeta%20%3D%20%2010%20log_%7B10%7D%20%5B%5Cfrac%7BP_c%7D%7BP_a%7D%20%5D-%2010%20log_%7B10%7D%20%5B%5Cfrac%7BP_b%7D%7BP_a%7D%20%5D%3D%201.3)
=> ![\beta =10log_{10} [\frac{\frac{P_b}{P_a}}{\frac{P_c}{P_a}} ] = 1.3](https://tex.z-dn.net/?f=%5Cbeta%20%3D10log_%7B10%7D%20%5B%5Cfrac%7B%5Cfrac%7BP_b%7D%7BP_a%7D%7D%7B%5Cfrac%7BP_c%7D%7BP_a%7D%7D%20%5D%20%3D%201.3)
=> ![\beta =10log_{10} [\frac{P_b}{P_c} ] = 1.3](https://tex.z-dn.net/?f=%5Cbeta%20%3D10log_%7B10%7D%20%5B%5Cfrac%7BP_b%7D%7BP_c%7D%20%5D%20%3D%201.3)
=> ![10log_{10} [\frac{P_b}{P_c} ] = 1.3](https://tex.z-dn.net/?f=10log_%7B10%7D%20%5B%5Cfrac%7BP_b%7D%7BP_c%7D%20%5D%20%3D%201.3)
=> ![log_{10} [\frac{P_b}{P_c} ] = 0.13](https://tex.z-dn.net/?f=log_%7B10%7D%20%5B%5Cfrac%7BP_b%7D%7BP_c%7D%20%5D%20%3D%200.13)
taking atilog of both sides
=>
=> 
=> 