the answer is an anteater
Here we go.
My abbreviations; KE = Kinetic Energy; GPE = Gravitational Potential Energy.
So first off, we know the fish has KE right when the bird releases it. Why? Because it has horizontal velocity after released! So let’s calculate it:
KE = 1/2(m)(V)^2
KE = 1/2(2)(18)^2
KE = 324 J
Nice!
We also know that the fish has GPE at its maximum height before release:
GPE = mgh
GPE = (2)(9.81)(5.40)
GPE = 105.95 J
Now, based on the *queue dramatic voice* LAW OF CONSERVATION OF ENERGY, we know all of the initial energy of the fish will be equal to the amount of final energy. And since the only form of energy when it hits the water is KE, we can write:
KEi + GPEi = KEf
(Remember - we found the initial energies before!)
(324) + (105.95) = KEf
KEf = 429.95J
And that’s you’re final answer! Notice how this value is MORE than the initial KE from before (324 J) - this is because all of the initial GPE from before was transformed into more KE as the fish fell (h decreased) and sped up (V increased).
If this helped please like it and comment!
Answer:
Reproducibility of research
Explanation:
The principle of science that explains why similar experimental investigations conducted in different parts of the world could result in the same outcome is referred to as reproducibility.
<em>A good research or experiment in science must be reproducible, otherwise, the outcome of such an experiment might become inadmissible within the scientific community. It is a core principle of the scientific method that similar results should be obtained when an experiment or observational study conducted in one place is repeated in another place with the same procedure. Hence, an experiment must be reproducible in science in order for the outcome of such an experiment to be part of the general scientific knowledge. </em>
That gives you the magnitude of velocity, but it doesn't handle
the directions that are involved.